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Abstract

In this work-in-progress paper, we speculate a method for
learning causal models directly from data without any inter-
ventions or inductive bias. Our ensemble approach uncovers
some interesting relations for understanding post-partum de-
pression based on family and socio-economic factors.

Introduction

We consider the problem of full model learning of causal
models from data specifically in the context of predicting
post-partum depression (PPD) from data. A common argu-
ment is that when learning only from data, learning causal
models is only as informative as learning a correlation model
(an opaque one such as deep belief network). In this work-
in-progress, we put this hypothesis to test. We aim to learn
a causal model using an ensemble of models and methods.
This is particularly important as scaling causal learning to
large problems without interventions or bias is a signifi-
cantly challenging task.

Specifically, we leverage the recent success in gradient
boosting to learn dependency networks (DN) (Natarajan et
al. 2012; Heckerman et al. 2000). Recall that a DN is a prob-
abilistic graphical model that approximates the joint distri-
bution using a product of conditionals. Hence, compared to a
Bayesian Network (BN) these are uninterpretable and more
importantly, approximate. However, their key advantage is
that since they are products of conditionals, the condition-
als can be learned in parallel and can be scaled to very large
data sets.

To scale causal model learning, we first learn a DN. Then
we identify and remove cycles from this DN. We consider
several different metrics employed in causal models to score
and remove the edges. Finally, we construct a model based
on the edges that are commonly present across all the met-
rics (i.e., the intersection of the edges from the different
methods). Contrary to popular intuition, we employ two lev-
els of ensemble learning to uncover a causal model - first is
on learning a DN using boosting and the second is on learn-
ing a causal model from several different metrics. Our eval-
uations on the real survey data for predicting PPD demon-
strates the utility of such an approach. While we present
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quantitative metrics, qualitatively, the edges that are learned
in this model uncover interesting findings.

Background and Related work

We briefly revisit Bayesian networks and dependency net-
works, and functional Gradient Boosting (FGB) next.

Bayesian Network: A Bayesian network (BN) is a di-
rected acyclic graph G = (X, E) whose nodes X represent
random variables and edges E represent the conditional in-
fluences among the variables. A BN encodes factored joint
representation as, P(X) = [[, P (X, | Pa(X;)), where
Pa(X;) is the parent set of the variable X;. It is well-
known that full model learning of a BN is computation-
ally intensive, as it involves repeated probabilistic infer-
ence inside parameter estimation which in turn is performed
in each step of structure search (Chickering 1996). There-
fore, much of the research has focused on approximate,
local search algorithms that are generally broadly classi-
fied as constraint-based and score-based. Our work is in-
spired by and can be considered as extending constraint-
based methods which have been discussed extensively in the
context of causal structure discovery. Traditional constraint-
based procedures such as PC algorithm learn a BN which
is consistent with conditional independencies that are in-
ferred from data (Spirtes, Glymour, and Scheines 1993;
Margaritis and Thrun 2000). A key attractiveness of these
approaches is that they are sound and complete given per-
fect (noise-free) data (Spirtes and Glymour 1991; Zhang
2008; Colombo and Maathuis 2014). However, they require
searching over exponential space of possible causal structure
and this prevents their adaptation to high-dimensional data
sets (even 33+ variables (Silander and Myllymaki 2012)).
Our approach can be seen as scaling such methods to large
data sets by potentially identifying a cyclic dependency net-
work that can then be transformed to a causal graph. Our
hypotheses is that learning such a dependency network is
scalable thus reducing the complexity of causality search.

Dependency Networks: Dependency Networks
(DN) (Heckerman et al. 2000) approximate the joint
distribution over the variables as a product of conditionals
thus allowing for cycles. These conditionals can be learned



locally, resulting in significant efficiency gains over other
exact models, i.e., P(X) = [[y.x P(X|Pa(X)), where
Pa(X) indicates the parent set of the target variable X.
Since they are approximate (unlike standard Bayes Nets
(BNs)), Gibbs sampling is typically used to recover the
joint distribution; this approach is, however, very slow even
in reasonably-sized domains. In summary, learning DNs
is scalable and efficient, especially for larger data sets, but
BNs are preferable for inference, interpretation, discovery
and analysis.

Functional Gradient Boosting Functional Gradient
Boosting (FGB) (Friedman 2001) represents the con-
ditional probability distribution of the target variable
as a sigmoid over a non-parametric function v, i.e.,

P(X|Pa(X)) = %m and computes the
gradients over the functional space instead of the parametric
space. This allows for approximating the true gradient by
computing the functional-gradient of each training example
separately. This gradient for example X; can be shown
to be I(X; = true) — P(X;|parents(X;)) where I is
the indicator function which returns 1 for positive and 0
for negative examples. These gradients correspond to the
difference between the true label and predicted probability
of an example. At each step a weak regressor (typically a
short tree) is fit to capture these gradients.

Post-partum Depression Prediction

Many new mothers experience mild to severe mood disor-
ders following childbirth, including post-partum depression,
which is a particularly severe form of depression. Symp-
toms characterizing PPD can include sadness, anxiety, irri-
tability, fatigue, reduced libido and possibly significant be-
havioral changes (Beck 2001). Untreated PPD can have a
significant impact on the health of both mother and infant.
Furthermore, PPD’s adverse effects can diminish parenting
abilities, which in turn can have a profound impact on the
development of the infant. Clinical diagnosis of PPD has re-
mained a challenging problem, additionally complicated by
the fact that a high percentage of women with PPD either do
not report symptoms or seek help.

In a recent post-partum depression study, demographic
and other non-clinical data were collected by focusing on
risk factors for early detection of PPD [citation withheld
for blind review]. Participants were recruited from Face-
book and Twitter. The survey itself was based on the Post-
partum Depression Predictors Inventory (PDPI-R), a self-
administered questionnaire, having 43 questions to collect
risk factors that included demographic and psycho-social
questions. Out of 173 new mothers, 25% were diagnosed
with post-partum depression. Given the responses to the
survey questionnaire, we previously evaluated if the ques-
tions were a high predictor of occurrence of PPD. While the
performance of the learning algorithm indicated that PPD
can be diagnosed effectively from survey questions, the ap-
proach did not yield insights into the interactions/influences
between the questions themselves.

Ensemble Learning of Causal Models

Given the background on the survey data set, we now present
our learning algorithm. We use bold capital letters to denote
sets (e.g., X) and plain capital letters to denote set members
(e.g., X; € X). Note that both the risk factors (43 from
survey questions) and the underlying medical condition (the
target) form the set of variables. Our goal is to learn a causal
model over these 44 variables.

We present a high-level overview of our framework in
Figure 1. After preprocessing, we learn a DN by learning
each conditional distribution using FGB (Natarajan et al.
2012). In parallel, we run three different scoring metrics
to compute independence scores between variables. We re-
move the edges from the DN that are suggested to be re-
moved by one of these metrics. After this step, we remove
edges between independent nodes from our original DN. Re-
sultant model is acyclic. For this new unified model, we
learn the parameters and compute log-likelihood score on
training data for evaluation.

Our Ensemble Causal Learning (ECL) algorithm has
three steps: learn a DN, compute test for conditional inde-
pendence between nodes and then remove the edges between
the nodes that are rendered mutually independent by all the
tests. The overall intuition behind this approach is fairly sim-
ple: use a scalable algorithm to handle the large number
of variables and learn a dense model quickly. Since it is a
potentially uninterpretable cyclic model, we remove edges
based on metrics typically used in causal learning(Spirtes,
Glymour, and Scheines 1993).

e Learn a DN. DNs allow scaling the learning task to large
data. Specifically, we take an efficient approach based
on the observation that trees can be used inside proba-
bilistic models to capture context-specific independence
(CSI) (Boutilier et al. 1996). To this effect, we iterate
through every variable and run FGB which results in sev-
eral small trees for each variable. This tree captures the
(conditional) probability of that particular variable V; con-
ditioned on all the other variables in the model, V'\ V;. This
conditional probability table can be compactly expressed
as P(V; | V\ V). The advantage of this approach is that
it learns the qualitative relationships (structure) and quan-
titative influences (parameters) simultaneously and all the
conditionals in parallel. The structure is simply the set of
all the variables appearing in the tree and the parameters
are the distributions at the leaves.

e Test for Conditional Independence. Next, the goal is to
convert the DN learned in the previous step to a more in-
terpretable and potentially a causal model. This necessi-
tates removal of cycles. We apply a series of conditional
independence tests in order to learn causal structure from
observational data. Specifically, We compute two statis-
tical tests 1). Pearson’s Chi-Squared test (Pearson 1992)
2). Hilbert Schmidt Independence Criterion (Gretton et al.
2005) and one Information theoretic test 3). Conditional
Mutual Information (Wyner 1978) from the data. We take
a conservative approach and identify the edges that are
present in all the tests. In addition, we removed the edges
that had low scores in any of the criteria. This allowed us
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Figure 1: Flow Chart of the Proposed Model. Grey arrows denote the flow of data, blue arrows denote the flow of the model
and green arrows denote the flow of additional statistics to compute Causal BN

to learn an acyclic model.

e Parameter Learning: Once all the uninformative edges
are detected and removed, we obtain the skeleton of the
graphical model. To estimate its parameters, we learned a
decision tree locally using only the variables in the parent
set of every node which allows us to capture CSI.

Experiments

While in most literature, one would quantitatively evaluate a
learning algorithm, our goal in this work is different. We ex-
plore the possibility of inducing a causal model from an en-
semble learner. Thus, this necessitates the employment of a
more qualitative approach. Nonetheless, we perform an eval-
uation on both these spectrums.

For the qualitative aspect, we present a sub-graph of the
learned network in Figure 2. A few important links stand
out - for instance, PPD is potentially caused by marital sat-
isfaction, prenatal anxiety, prenatal depression and whether
someone has social support. This is interesting as there is
a debate in the community about the link between prenatal
anxiety, depression and PPD. Similarly, marital satisfaction
is caused by infant temperament, relationship problems and
if the woman is a first-time mom. These again are interesting
and provide opportunities for further investigation[citation
withheld for blind review].

Discussion

Our ECL has some salient advantages - (1) One could paral-
lelize several steps - learning DN, computing independence
scores and detecting cycles - potentially allowing for scal-
ing learning to large problems. (2) ECL exploits CSI at two
levels - when learning a DN and when computing causal in-
fluences. (3) Standard regularization techniques can be eas-
ily adapted. (4) Finally, the use of both local search and
constraint-based methods inside the algorithm enables it to
learn denser models than the constraint-based methods mak-
ing them an attractive option for real data sets.

Beyond these, our key contribution is unearthing causal
relationships in understanding PPD. Many of the causal
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Figure 2: Subgraph from our proposed Causal BN approach
depicting the most interesting influence structures. The col-
ored edges have support in the literature as shown in Table
2. To our knowledge, none of the approaches listed in the
table have considered these causal influences together and
instead only considered subsets of them when performing
their analyses.

links are quite interesting - a few socially interesting ones
such as being married influences marital satisfaction, the
temperament of infant influences marital satisfaction, un-
planned pregnancy influences marital satisfaction or that
PPD influences self-esteem appear. As shown in Table 2,
many of these links have support from different fields of re-
search and have been previously considered and published.
As far as we are aware, this is the first work consider-
ing many of these facts in building a causal model. Conse-
quently, these highly interesting social questions can provide
directions for further research. Validating these on larger
data sets, validating the causal nature of these links using
interventions and domain expertise and exploring theoreti-
cally the prospect of employing several weak influences (aka
ensembles) on learning a single causal model remain inter-
esting directions for future research.



Edges Picked by ECL

Study Reference

Social_support < PPD

(O’hara and Swain 1996; Beck 2001; Seguin et al. 1999)
(Nielsen et al. 2000; Logsdon, Birkimer, and Usui 2000)

Prenatal_anxiety < PPD

(O’hara and Swain 1996; Watson et al. 1984; Beck 2001)
(Johnstone et al. 2001; Neter et al. 1995; Hayworth et al. 1980)

Prenatal _depression < PPD

(O’hara and Swain 1996; Beck 2001; Josefsson et al. 2002)
(Johnstone et al. 2001; Neter et al. 1995)

Marital_satis faction < PPD

(Kumar and Robson 1984; O’hara and Swain 1996; Beck 2001)

Infant_temperament < Marital_satis faction
Child_care_stress < Marital_satis faction

(Wright, Henggeler, and Craig 1986; Fields-Olivieri, Cole, and Maggi 2017)

First_time_mom < Marital_satis faction

(Doss et al. 2009; Messmer, Miller, and Yu 2012)

Education < Marital_satis faction

(Cox et al. 1999; Yanikkerem, Ay, and Piro 2013)

Unplanned < Marital _satis faction

(Belsky and Rovine 1990; Cox et al. 1999; Yanikkerem, Ay, and Piro 2013)

Depression < Marital_satis faction

(Halford et al. 1999)

Table 1: Causal factors for post-partum depression as picked by ECL with supporting references
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