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Abstract

The pharmaceutical industry, consumer protection
groups, users of medications and government over-
sight agencies are all strongly interested in identify-
ing adverse reactions to drugs. While a clinical trial
of a drug may use only a thousand patients, once a
drug is released on the market it may be taken by
millions of patients. As a result, in many cases ad-
verse drug events (ADEs) are observed in the broader
population that were not identified during clinical tri-
als. Therefore, there is a need for continued, post-
marketing surveillance of drugs to identify previously-
unanticipated ADEs. This paper casts this problem as
a reverse machine learning task, related to relational
subgroup discovery and provides an initial evaluation
of this approach based on experiments with an actual
EMR/EHR and known adverse drug events.

Introduction
Adverse drug events (ADEs) are estimated to account for
10-30% of hospital admissions, with costs in the United
States alone between 30 and 150 billion dollars annually
(Lazarou, Pomeranz, and Corey 1998), and with more than
180,000 life threatening or fatal ADEs annually, of which
50% could have been prevented (Gurwitz et al. 2003). Al-
though the U.S. Food and Drug Administration (FDA) and
its counterparts elsewhere have preapproval processes for
drugs that are rigorous and involve controlled clinical trials,
such processes cannot possibly uncover everything about a
drug. While a clinical trial might use only a thousand pa-
tients, once a drug is released on the market it may be taken
by millions of patients. As a result, additional information
about possible risks of use is often gained after a drug is
released on the market to a larger, more diverse population.

Figure 1 presents a sample database of electronic health
records (EHR) and a few patient records. In this example
of a modern EHR, available information includes phenotype
data: such as gender, height, and weight, clinical data such
as medical visits, lab tests, and prescriptions, and genotype
data such as Single Nucleotide Polymorphisms (SNPs, or
individual DNA positions where some variation can be ex-
pected). This paper proposes reverse machine learning as a
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Figure 1: Sample structure of EHR

post-marketing surveillance tool in order to predict and/or
detect adverse reactions to drugs from EHR data. We apply
this approach to actual EHR data sets, including data sets
provided by the Observational Medical Outcomes Partner-
ship (OMOP). This task poses several novel challenges to
the Machine Learning (ML) community:

1. One cannot assume advance knowledge as to an ADE that
a particular drug might cause. In some cases, we may sus-
pect a specific ADE, such as increased risk of heart attack
(myocardial infarction, or MI); in such a case, supervised
learning can be employed with MI as the class variable.
But if we do not know the ADE in advance, what class
variable can we use? We propose using the drug itself as
the class variable and claim that, while we already know
who is taking the drug, examination of a model that accu-
rately predicts drug use can give insight into ADEs. Be-
cause we seek to discover the ADE by building a model
to “predict” drug use (who has been on the drug), rather
than to predict the actual entity of interest (the ADE), we
refer to this approach as reverse machine learning.

2. The data are multi-relational. Several objects such as
doctors, patients, drugs, diseases, and labs are connected
through relations such as visits, prescriptions, diagnoses,
etc. If traditional ML techniques are to be employed, they
require flattening the data into a single table. All known
flattening techniques, such as computing a join or sum-
mary features result in either (1) changes in frequencies



on which machine learning algorithms critically depend
or (2) loss of information.

3. There are arbitrary numbers of patient visits, diagnoses
and prescriptions for different patients, i.e., there is no
fixed pattern in the diagnoses and prescriptions of the pa-
tients. It is incorrect to assume that there are fixed number
of diagnoses or that only the last diagnosis is relevant. To
predict ADEs for a drug, it is important to consider the
other drugs prescribed for the patient, as well as past di-
agnoses, procedures, and laboratory results.

4. Since all the preceding events and their interactions are
temporal, it is important to explicitly model time. For ex-
ample, some drugs taken at the same time can lead to side-
effects, while in other cases one drug taken after another
can cause a side-effect. As we demonstrate in our exper-
iments, it is important to capture such interactions to be
able to make useful predictions.

5. We need to learn lessons from epidemiology, especially
pharmacoepidemiology about how to construct cases and
controls—positive and negative examples—as well as
how to address confounders. Otherwise our methods will
simply identify disease conditions associated with the
drug for other reasons, such as drug indications or con-
ditions correlated with use of the drug for other reasons.

Contributions to Machine Learning: This paper presents
a machine learning approach to studying an important, real-
world, high-impact task—identifying ADEs—for which
data sets are available through the Observational Medical
Outcomes Partnership (http://www.omop.org). The
paper shows how relational learning (Lavrac and Dzeroski
1994; De Raedt 2008) is especially well-suited to the task,
because of the multi-relational nature of EHR data. In ad-
dition, this paper provides technical lessons for ML that
should be applicable to a number of other domains as well.
In this work, we follow the suggested structure of applica-
tion papers in the Special Issue of the Machine Learning
Journal on Applications (Kohavi and Provost 1998). We list
these lessons here, discuss them as they arise in our presen-
tation of the empirical analysis of our approach, and then
review them again at the end.

1. In some ML applications, we may not have observations
for the class variable. For example, we might hypothesize
an unknown genetic factor in a disease or an unknown
subtype of a disease. In such situations, we typically re-
sort to unsupervised learning. The task of identifying pre-
viously unanticipated ADEs is such a situation – with-
out an hypothesized ADE, how can we run a supervised
learning algorithm to model it? Without knowing in ad-
vance that MI is an ADE for Cox2 inhibitors (Cox2ib),
how can we provide supervision such that the algorithm
will predict that MI risk is raised by these drugs? We
show that the problem can be addressed by running su-
pervised learning “in reverse,” to learn a model to predict
who is on a Cox2ib. If we can identify some subgroup of
Cox2ib patients based on the events occurring after they
start Cox2ib, this can provide evidence that the subgroup
might be sharing some common effects of Cox2ib. We

anticipate this same approach can also be applied to other
situations where the class variable of interest is not ob-
served. We refer to this lesson as Reverse ML.

2. We introduce to ML some useful ideas from epidemiol-
ogy, including treating each patient as his/her own control,
by drawing as positive examples patients and their data
after they begin use of a drug and as negative examples
the same patients but before they begin use of the drug.
Another idea we employ from epidemiology is to use a
domain-specific scoring function that includes normaliza-
tion based on other drugs and other conditions. We intro-
duce to epidemiology the notion of learning rules to char-
acterize ADEs, rather than simply scoring drug-condition
pairs which require the ADE to correspond to an already-
defined condition.

3. Finally, this paper reinforces the need for iteration be-
tween human and computer in order to obtain the models
that provide the most insight for the task. In ADE identifi-
cation, rules that are predictive of drug use can be taken as
candidate ADEs, but these candidate ADEs must then be
vetted by a human expert. If some of the rules are found
to still capture other factors besides drug effects such as
indications, then these rules should be discarded. We refer
to this lesson as Iterative Interaction. Note that the predic-
tion is in reverse not only in terms of causality, but more
importantly in terms of the label of interest.

Machine Learning for Predicting ADEs
Learning adverse events can be defined as follows:

Given: Patient data (from claims databases and/or EHRs)
and a drug D

Do: Determine if evidence exists that associates D with
some previously unanticipated adverse event

Note that no specific associated ADE has been hypothesized,
and there is a need to identify the event to be predicted.

To our knowledge, ML has not been applied to this task
before now. As mentioned above, our approach for this task
is to use machine learning “in reverse.” We seek a model that
can predict which patients are on drugD using the data after
they start the drug (left-censored) and also censoring the in-
dications of the drug. If a model can predict which patients
are taking the drug, there must be some combination of clin-
ical experiences more common among patients on the drug.
In theory, this commonality should not consist of common
causes for use of the drug, but common effects. The model
can then be examined by experts to see if it might indicate a
possible adverse event.

Formalizing Learning in Reverse: Given a (large) EHR
and a drug, our task is to find a condition that is related to the
drug. To better understand the complexity of the problem,
consider the Markov model shown in Figure 2. The states
are a set of partially observed variables 〈A,C,L,D〉, where
A1 are attributes of the patient, such as gender, age, family

1We use bold-face letters to denote sets, superscripts to denote
time and subscripts denote the index.



history, and genetic information; C are diagnoses; L are lab
tests, and D are drugs prescribed. Given the dimensionality
of the task, we chose to ignore latent variables (Saria, Koller,
and Penn 2010) in this model.

We define an ADE to be an unexpected dependency be-
tween an observed variable in C and an observed vari-
able in D, in the simplest case, or even some combina-
tion of variables in D. To our knowledge the present pa-
per is the first to consider the more complex case of com-
binations, although we begin with the simpler case. No-
tice that vectors A,C,L,D have a large number of vari-
ables: our EHR includes over 10k reported conditions, and
4k to 5k different drugs. A standard approach to this prob-
lem is to assume two time-steps: events that happened be-
fore (step 0) and after taking a drug Dj (step 1). Tech-
niques such as disproportionality analysis (Wilson, Tha-
bane, and Holbrook 2004; Zorych et al. 2011) then search
for a condition Ci such that its probability increases af-
ter taking drug Dj , i.e., P (Ct

i |Dt1
j ) > P (Ct′

i |Dt1
j ) s.t.

t > t1 > t′, where Ct
i denotes the condition Ci at time t.

CC

DD

AA

LL

Figure 2: A
temporal model
capturing our
problem; horizon-
tal lines represent
time.

To do so, one must obtain estima-
tors P̂ (Ct

i |Dt1
j ) and P̂ (Ct′

i |Dt1
j )

and test against the null hypothe-
sis. In practice, estimates can be
confounded by other parameters.
Typically, one will consider A and
stratify at least over age and gen-
der, and then weight the estimates.
One can also go a step further
and count time of exposure, as in
observational screening. Focus on
the temporal aspect is given by
the univariate method (Newgard
et al. 2004), where the condition
Ci is considered the result of a
non-homogeneous Poisson process
with two rates, for during and af-
ter usage of drug Dj . A different

method is to take into account confounding between dif-
ferent drugs. For example, a Bayesian logistic regression
method (Caster et al. 2010) takes into account all drugs, plus
gender and age information, to estimate the P (condition).

Essentially, these different methods search con-
ditions Cj

i such that their posterior probabilities
of occurrence are greater than some threshold
(P (Cj

i |A1;t,C1;t,L1;t,D1;t) > δ), i.e., they search
through the entire EHR for some conditions occurring
with a non-trivial probability given the drug history.
Given the size of the problem, they focus on different
combinations of A,C,L,D. We use the ′ to refer to
a (possibly empty) subset, say, D′ a subset of D. The
previous approaches to the problem can be described as an
enumeration of P (Cj

i |A′1;t,C′1;t,L′1;t,D′1;t), given some
fixed A′1;t,C′1;t,L′1;t,D′1;t.

In this work, we propose reverse learning. In-
stead of a direct search for Ci, we propose to enu-
merate over A′1;t,C′1;t,L′1;t,D′1;t and compute
P (Dk

j |A′1;t,C′1;t,L′1;t,D′1;t) for some k as we know

that if Ci is an ADE for Dj , then Cl
i will be in a learned

model for Dk
j where l ≥ k. We thus reduce the problem

of learning models for every condition Ci to the problem
of finding out whether Ci is in a model for Dj . Thus,
we can use standard learning technology to perform the
search. Notice that our approach is akin to Bayesian
inference, where we compute P (C|E) by estimating
P (E|C). Indeed it reduces to this in the case where
we just search over fixed subsets. On the other hand,
the advantage is not in the Bayesian approach itself, as
P (Dj |A′1;t,C′1;t,L′1;t,D′1;t) is not necessarily always
easier to estimate than P (Ci|A′1;t,C′1;t,L′1;t,D′1;t): both
are estimated from counts. The advantage is in transforming
the learning process and making the problem supervised.

The strong relation between our work and Bayesian learn-
ing suggests a connection between reverse learning and ab-
duction (Sato and Kameya 2002; Kakas and Flach 2009).
Notice that in our setting the goal is not as much to learn
a set of abducibles for an existing procedure, as to learn a
new concept. Our problem is thus closer to the problem of
predicate invention (Muggleton 1994; Richards and Mooney
1995; Davis et al. 2007; Muggleton et al. 2010). We be-
lieve that such insights will guide further progress in reverse
learning.

Implementing Reverse Learning To apply our reverse
learning algorithm, we need to analyze in more detail:

1. EHR data are multi-relational and temporal, necessitating
relational learning (De Raedt 2008) for this task.

2. The output of the learning process should be easy to in-
terpret by the domain expert (Page and Srinivasan 2003).

3. Generally, only a few patients on a drug D will experi-
ence novel ADEs (ADEs not already found during clini-
cal trials). The learned model need not, and indeed most
often should not, correctly identify everyone on the drug,
but rather merely a subgroup of those on the drug while
not generating many false positives (individuals not on the
drug). This argues that our reverse learning problem actu-
ally can be viewed as ”subgroup discovery”(Wrobel 1997;
Klosgen 2002; Zelezný and Lavrac 2006), in this case
finding a subgroup of patients on drug D who share some
subsequent clinical events.

This suggests using a relational rule-based classifier, since
relational rules naturally induce subgroups on the data, are
discriminant, and are often easy to understand. In our exper-
iments, we use the ILP system, Aleph (Srinivasan 2004). In
the remainder of the section, for concreteness, we present
the discussion in terms of Aleph. Aleph learns rules in the
form of Prolog clauses and scores rules by coverage (P−N ),
but this scoring function can be easily replaced by any user-
defined scoring function.

Suppose we did not know that Cox2 inhibitors doubled
the risk of MI, but we wondered if these drugs had any as-
sociated ADE. Our reverse ML approach can be seen as a
case control study, where “cases”, or positive examples, are
the patients on Cox2ibs and “controls” are the negative ex-
amples. Choosing controls is fundamental in obtaining good



study quality (Rothman and Greenland 2008). We can use
the patient him/herself as control. In this case the data on the
patient prior to drug usage is the negative example. Alterna-
tively, we can search for age- and gender-matched controls
and use them as negative examples. In this case, for each
positive example, a control is a patient of the same age and
gender who is not on a Cox2ib. (Controls could be selected
to be similar to the cases in other ways—age and gender
are just the most common such features in clinical studies.)

Figure 3: Distribution of
people with risk of MI

Because Cox2ibs double the
risk of MI, we can expect
our distribution of selected
patients to appear as in Fig-
ure 3. For example, if we have
say 200 positive (P) patients
who suffer an MI, we ex-
pect about 100 negative (N)
patients. The following rule
would have a strong score of

P −N = 100 and hence would be returned by Aleph unless
some other rule scores even better.

cox2ib( Patient)← mi( Patient)
This rule says that a patient was likely on a Cox2ib if they
suffered an MI.

Another advantage of the multi-relational approach, is
that the body (precondition) of the rule does not have to be
a single condition, but it can be a combination of conditions
and lab results, possibly in a temporal order. Hence, ADEs
that do not neatly correspond to an exact pre-existing diag-
nosis code can be discovered. Furthermore, the body of the
rule can involve other drugs. So, ADEs caused by drug in-
teractions can be captured. For example, it has recently been
observed that patients on Plavix may have an increased risk
of stroke (ordinarily prevented by Plavix) if they are also on
Omeprazole. This can be represented by the following rule:

plavix(Patient)← omeprazole(Patient) ∧ stroke(Patient)
Just because the rule is representable does not mean it will
be learned. This depends on its support in the data, and the
support of other rules that could score better, specifically as
the support impacts the scoring function we employ.

In our experiments, we consider two cases. In the first
case, we seek to associate drugs with specific conditions or
candidate ADEs. In terms of relational learning, an associa-
tion is represented by a rule, or definite clause, whose head
is an atomic formula built from a predicate naming the drug
and a variable standing for the patient, and whose tail is an
atomic formula built from a predicate naming the condition
and the same patient variable; this form is illustrated by the
cox2ib and mi rule above. In this case our reverse learning
approach is another way to carry out a standard association
study, differing only in the scoring function we employ. In
the second case, we do not assume a list of candidate ADEs
or conditions; instead an ADE is represented by any con-
junction of atomic formulas with predicates naming entities
from the EMR such as conditions, observations (labs or vi-
tals), or other drugs, or possibly predicates defined in a back-
ground theory such as before. In this case reverse learning
extends beyond the standard association study methodology.

Experiments with OMOP Data and an EHR
Our first experiment is with a large real-world health insur-
ance claims database available through OMOP. This was one
of several databases available for evaluation of methods for
ADE discovery (Ryan et al. 2010); OMOP evaluated meth-
ods by use of 10 known drug-ADE pairs such as Warfarin-
bleeding and ACE inhibitor-Angioedema. Because OMOP
had multiple different reasonable definitions for each ADE
condition, this resulted in 35 ground-truth positive exam-
ples. All other pairs consisting of 1 of the 10 drugs with one
of these 30 condition definitions were taken to be ground-
truth negatives. This strong definition of negative examples
may lead to somewhat pessimistic evaluation results, as evi-
dence is accruing that some of these negative examples may
actually be ADEs as well, such as a possible association be-
tween ACE inhibitors and renal damage. The methods were
evaluated on a database with over 1.2 million subjects, and
that includes 17M drug reports and 29M condition reports,
for a total of 1300 drugs and over 10k conditions. The best
approaches, with the best combinations of parameter set-
tings achieved AUCROC around 0.8 (Madigan and Ryan
2011); this is quite high considering that many approaches
did no better than chance (AUCROC of roughly 0.5).

As a first study, because all the other methods tested by
OMOP ranked only drug-condition pairs, we limited Aleph
to rules consisting of only a single condition in the body of
the rule, that is, rules of the form of the following example:

warfarin(X)← bleeding(X)

Aleph with its default scoring function and this constraint
scored no better than chance. This was the case whether we
chose positive and negative examples to be individuals on or
not on the drug, or to be individuals (their diagnoses, drugs,
labs, vitals, etc.) after or before drug use, respectively. We
settled on choosing individuals as their own controls, and on
a scoring function based on the posterior probability which
has the following motivation.

We are interested in whether a drug d causes a condition,
or ADE, c, but we are unable to carry out a controlled ex-
periment to test causality. Following our reverse learning
approach, we use each drug d as a reference, and Aleph
computes for every condition c the counts of patients such
that P =

∑
I{I|tcI > tdI}, and N =

∑
I{I|tcI ≤ tId}.

In this case, P/(P + N) is an estimator to the distribution
Pr(tc > td|c, d).

Note that one drug d might yield high probabilities for
many conditions simply because it is frequently used by
patients who are generally unhealthy or chronically ill; we
can correct for this with a penalty term that incorporates
all conditions, such as Pr(tC > td|C, d): the number of
patients in whom any condition C occurs later than d di-
vided by the total number of patients who have any condi-
tion and the particular drug d. Also, a condition cmight yield
high values of Pr(tc > td|c, d) for many different drugs d;
again we can correct for this with an analogous penalty term
Pr(tC > td|C, d) over all conditions C. We can incorpo-
rate each penalty term by dividing the original metric by
it, or by multiplying the original metric by one minus this
penalty term. In practice both approaches work equally well



for ranking drug-condition pairs. We can show that the above
approach is equivalent to computing the point-wise mutual
information (Mackay 2003) between 〈d, c〉 pairs.
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Figure 4: ROC Plot on OMOP data

With this scoring function Aleph, achieves an AUCROC
of 0.76, as shown in Figure 4. While this result is com-
petitive without requiring parameter tuning, it nevertheless
brings no improvement over other methods. The main bene-
fit of using reverse machine learning with Aleph comes only
with extending the possible lengths of the rule bodies. Our
next experiment was to do so with the same data set. Runs of
this type take substantially longer, varying from twenty min-
utes to almost seven hours depending on the drug. We no
longer had ground truth against which to score these more
complex rules, but we were able to evaluate their potential
value, and especially their ability to pick up on drug-drug
interactions. One of the top-scoring rules was:

warfarin(X)← bleeding(X) ∧ antibiotics(X)

This rule represents a rediscovery that antibiotics elevate
the risk of bleeding in patients on Warfarin, and the rule
scores significantly better than a rule with bleeding alone.

Our second experiment is with a very different EHR. The
Marshfield Clinic has one of the oldest internally developed
EHRs (Cattails MD) in the US, with coded diagnoses dat-
ing back to the early 1960s. Cattails MD has over 13, 000
users throughout Central and Northern Wisconsin. Data col-
lected for clinical care is transferred daily into the Marsh-
field Clinic Data Warehouse (CDW) where it is integrated.
CDW is the source of data for this study. Programs were
developed to select, de-identify by removing direct identi-
fiers, and then transfer the data to a collaboration server. For
this work, the specific CDW tables used were: ICD9 diag-
noses, observations (lab results and others such as weight,
blood pressure, and height), three sources of medication in-
formation and patient demographics (gender and birth date).
Also associated with every entry was a date, so we provided
Aleph with background knowledge predicates to compare
dates.

We ran on two drugs, Warfarin and Vioxx. For War-
farin the approach easily rediscovered the known ADE of
bleeding, together with the common treatment for Warfarin-
induced bleeding (Phytonadione, or Vitamin K1).

warfarin(X)←bleeding(X,D1)∧
phytonadione(X,D2) ∧ after(D1, D2)

Vioxx is a drug that was pulled from the market because
it was found to double the risk of heart attack, or myocar-
dial infarction (MI). We next tested to see whether Aleph
would uncover this link with MI if the link were unknown.
Vioxx belongs to a larger class of drugs called Cox2 in-
hibitors. The overall goal was to identify possible ADEs
caused by Cox2ib. In our reverse ML approach, the specific
goal of the Aleph run was to learn rules to accurately pre-
dict which patients had an indicated use of Cox2ib. These
rules would then be vetted by a human expert to distinguish
which were merely associated with indications of the drug
(diseases or conditions for which the drug is prescribed) and
which constituted possible ADEs (or other interesting asso-
ciations, such as off-label uses for the drug). We first vali-
date our methodology with a run in which only diagnoses
are used and rules are kept as short as possible—one body
literal (precondition) per rule. Myocardial infarction (MI) is
a known adverse event of Cox2ib, and we wanted to test if
the method would uncover MI automatically. In Table 1 we
show the ten most significant rules identified by Aleph for a
single run. Note that the penultimate rule (highlighted) iden-
tifies the diagnosis of 410 (MI) as a possible ADE of Cox2.
The fact that this ADE can be learned from data demon-
strates that our method is capable of identifying important
drug interactions and side-effects.

In some cases, a drug may cause an ADE that does not
neatly correspond to an existing diagnosis code (e.g., ICD9
code), or that only occurs in the presence of another drug
or other preconditions. In such a case, simple 1-literal rules
will not suffice to capture the ADE. We now report a run in
which all of the background knowledge was used, including
labs, vitals, demographics and other drugs. Table 2 shows
the top ten most significant rules. The use of ILP yields inter-
pretable rules. Fisher’s exact test indicated that many rules
demonstrated a significant difference in identifying positive
cases over chance. Aleph also provided summary statistics
on model performance for identifying subjects on Cox2ibs,
as shown below the Tables 1 and 2. If we assume that the
probability of being on the Cox2ib is greater than 0.5 (the
common threshold) then the model has an accuracy of 78%
in predicting Cox2ib use. The sobering aspect of this result
is that Aleph learns over a hundred rules, and while some
are potential ADEs, most appear to simply describe combi-
nations of features associated with indications for the drug.
At present a clinician must then sort through this large set of
rules in order to find any evidence for possible ADEs. Re-
search is required to find ways to reduce the burden on the
clinician, including automatically focusing the rule set to-
ward possible ADEs and presenting the remaining rules in a
manner most likely to ease human effort.

Conclusion
This paper presents an initial study of machine learning for
the discovery of unanticipated adverse drug events (ADEs).
The key contributions and lessons learned for ML are:

• ML can be used “in reverse” when the real class value



Rule Pos Neg Total P-value
diagnoses(A, ,’790.29’,’Abnormal Glucose Test, Other Abn Glucose’, ). 333 137 470 6.80E-20
diagnoses(A, ,’V54.89’,’Other Orthopedic Aftercare ’, ). 403 189 592 8.59E-19
diagnoses(A, ,’V58.76’,’Aftercare Foll Surg Of The Genitourinary Sys’, ). 287 129 416 6.58E-15
diagnoses(A, ,’V06.1’,’Diphtheria-Tetanus-Pertussis,Comb(Dtp)(Dtap)’, ). 211 82 293 2.88E-14
diagnoses(A, ,’959.19’,’Other Injury Of Other Sites Of Trunk ’, ). 212 89 301 9.86E-13
diagnoses(A, ,’959.11’,’Other Injury Of Chest Wall’, ). 195 81 276 5.17E-12
diagnoses(A, ,’V58.75’,’Aftercare Foll Surg Of Teeth, Oral Cav, Dig Sys’, ). 236 115 351 9.88E-11
diagnoses(A, ,’V58.72’,’Aftercare Following Surgery Nervous Syst, Nec’, ). 222 106 328 1.40E-10
diagnoses(A, ,’410’,’Myocardial Infarction’, ). 212 100 312 2.13E-10
diagnoses(A, ,’790.21’,’Impaired Fasting Glucose ’, ). 182 80 262 2.62E-10

Rule + -
+ 838 333 1171
- 987 1492 2479

1825 1825 3650

Table 1: Aleph Rules Generated for Cox2 Inhibitor Use (Single Diagnosis)
Rule Pos Neg Total P-value
gender(A,’Female’), hasdrug(A, ,’IBUPROFEN’), diagnoses(A, ,’305.1’,’Tobacco Use Disorder’, ). 509 177 686 4.25E-38
diagnoses(A,B,’462’,’Acute Pharyngitis’, ), hasdrug(A,B,’IBUPROFEN’). 457 148 605 1.27E-37
hasdrug(A, ,’NORGESTIMATE-ETHINYL ESTRADIOL’), gender(A,’Female’). 339 88 427 8.12E-36
diagnoses(A, ,’V70.0’,’Routine Medical Exam’, ), hasdrug(A,B,’IBUPROFEN) 531 199 730 1E-35
diagnoses(A,B,’724.2’,’Lumbago’, ). 433 144 577 1.44E-34
diagnoses(A, ,’462’,’Acute Pharyngitis’, ), gender(A,’Male’). 502 186 688 2.02E-34
diagnoses(A, ,’89.39’,’Nonoperative Exams Nec’, ), diagnoses(A, ,’305.1’,’Tobacco Use Disorder’, ). 415 135 550 4.12E-34
hasdrug(A, ,’CYCLOBENZAPRINE HCL’), gender(A,’Male’). hasdrug(A, ,’FLUOXETINE HCL’), 493 189 682 3.6E-32
gender(A,’Female’). l observations(A,B,’Calcium’,9.8), diagnoses(A,B,’724.5’,’Backache Nos’, ). 487 189 676 3.28E-31
diagnoses(A, ,’V71.89’,’Observ For Other Specified Suspected Condi10/00’, ), gender(A,’Male’). 492 193 685 5.35E-31

Rule + -
+ 1729 708 2345
- 96 1119 1215

1825 1825 3650

Table 2: Aleph Rules Generated for Cox2 Inhibitor Use

of interest—in this case, some unanticipated ADE—is not
known at learning time. We show that this approach is able
to successfully uncover ADEs.
• The paper demonstrates the importance of learning from
years of epidemiology research in selecting our positive and
negative examples for machine learning, as well as in setting
our scoring function. We do not want to find patterns in the
patients who get prescribed a particular drug, because we
already know such patterns—they are the indications of the
drug. Hence, it is important to control by using data about
patients before the drug, as well as by total amounts of data
on various conditions following various drugs.
• Another lesson is that despite our censoring, a high accu-
racy, or highly-accurate discovered subgroup, does not au-
tomatically mean we have uncovered one or more ADEs.
Instead, all rules must be vetted by a human expert to deter-
mine if they are representative of an ADE or of some other
phenomenon, such as that patients on arthritis medication
such as Cox2ib also suffer from other correlated ailments.
Once these associated conditions are also censored, learning
ideally should be re-run in case ADEs were masked by other
rules that scored better.
• Another lesson is that data are multi-relational, includ-
ing longitudinal (temporal), and hence may be best analyzed
by methods that can directly handle such data. It would be
desirable to take into account time from drug exposure to

events, but this is a challenging direction because different
drugs can cause ADEs over different ranges of time. Some
drugs may cause an ADE within hours after they are taken,
whereas others may have permanent effects that only mani-
fest themselves as an ADE years later.

Applications for Machine Learning in Active Surveil-
lance: In addition to the task of ADE that we have pre-
sented, machine learning approaches could support many
drug safety needs, including:

1 Identify and characterize temporal relationships between
drugs and conditions across the population - Is there an
association between exposure to Vioxx and cardiovascular
events such as MI? If so, what is the likely time-to-onset of
the event, relative to exposure? Does the risk increase over
time and vary by dose?
2 Identify drug-condition relationships within patient sub-
populations - Among elderly, what are the observed effects
of a particular medicine? Among patients with renal impair-
ment, what is rate of adverse events?
3 Identify drug-drug interactions that produce harmful ef-
fects - Which concomitant drug combinations produce ele-
vated risks, relative to exposure to individual products?
4 Identify risk factors and define patient subgroups with dif-
ferential effects of a drug-related adverse event - Which pa-
tients are more likely to experience adverse events? Which



patients less likely to experience adverse events?
5 Create models for predicting event onset - Which patients
are likely to have experienced a MI, based on available infor-
mation about diagnoses (AMI and other CV terms), diagnos-
tic procedures (EKG), treatments (PCI), lab tests (troponin,
CK-MB), and other observations.

Identifying previously-unanticipated ADEs, predicting who
is most at risk for an ADE, and predicting safe and effica-
cious doses of drugs for particular patients all are impor-
tant needs for society. With the recent advent of “paperless”
medical record systems, the pieces are in place for machine
learning to help meet these important needs.
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