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Abstract. Cardiac arrest (CA) is a devastating complication for chil-
dren in the cardiac intensive care unit (CICU). We developed an “any-
time” algorithm to predict CA, using the first few hours of EHR data for
initial approximation, and then using information from subsequent time
periods to augment the predictive model, improving performance at each
iteration. Our initial empirical evaluation on EHR CICU data shows that
the model achieves significantly higher performance than learning with
all the available data at each iteration when predicting CA inside CICU.
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1 Introduction

Congenital heart disease is a significant cause of death and morbidity in neonates
and children. A devastating complication in children with heart disease is cardiac
arrest (CA). If the condition is not quickly reversed, there will be significant
damage to other organ systems and possibly death [4]. An important challenge
is to develop machine learning algorithms using the electronic health record
(EHR) to predict which critically ill children in the cardiac intensive care unit
(CICU) are at increased risk of cardiac arrest [7]. A desirable property for these
algorithms is the ability to generate a reasonable approximation of the desired
result with few data, and then to refine the prediction with time as more data
accumulate. Such anytime algorithms [8] exhibit improved accuracy with time,
allowing for reasoning continuously as more data arrive.

We devised an anytime algorithm to compute the probability of CA in chil-
dren with congenital heart disease in the CICU. Using the Functional Gradient
Boosting paradigm [2], we create a set of regression trees whose cardinality grows
as more clinical data accumulate in the EHR. The data are collected in incre-
ments of several hours, and at each increment, new trees are concatenated to the
previous model in a stacking fashion, improving predictive ability with time.
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2 Methods

2.1 Patients and EHR Data

We obtained an exemption from the UTSW IRB as the data are deidentified.
Hemodynamic, laboratory, demographic, medication data were collected from
EHR in patients managed in the pediatric CICU at Children’s Medical Center
of Dallas. Records were obtained for 160 patients (age ≤ 21) who experienced
CA over a 10 year period; EHR data were collected from the 48 h prior to CA. We
also collected the first 48 h of data from 711 control (non-CA) patients selected
at random from CICU patients managed during the same time period.

The ages in each group ranged from 1 day to 20 years (average age in arrest
is 2.88 while in control is 3.45). Our goal is to predict the probability of CA
progressively from 13 h before the arrest to the hour of arrest.

Table 1. Clinical features and measure-
ment units used in predictive models. Those
marked with * are standardized for each
patient (explained in text).

Feature units

Pulse rate *
Diastolic blood pressure *
Oxygen saturation %
Urine output *
Base excess *
Anion gap mEq/L
Fraction inspired O2 (fiO2) *
Vasoactive inotropic score (VIS) (None)
End tidal pCO2 mmHG
Near infrared spectroscopy rso 1 *
Near infrared spectroscopy rso 2 *

We extracted 11 EHR features,
listed in Table 1. Each of the features
was discretized into three “bins”,
using scikit-learn [6] “kmeans” strat-
egy. To address the challenge of work-
ing with pediatric patients whose nor-
mal vital signs vary with age, and to
account for the CICU patients where
“normal” values may be quite abnor-
mal compared to healthy patients,
many of the features were normalized
to reference values obtained by com-
puting average parameter values over
the first four hours of the 48 h tra-
jectory. These features were selected
by a pediatric ICU physician, and are
marked with “*” in Table 1.

We discretized the time into one-hour increments; when multiple feature
values were present during the hour, the mean of the values was used. Finally,
to devise models that operate using symbols rather than simple features, and
to avoid the imputation of missing results, we converted the data into predicate
logic format. For example, the predicate “pulse(subj1001, LE 0.9, 16)” indicates
that subject 1001 at 16 h prior to cardiac arrest exhibited a pulse rate less than
or equal to 0.9 times his/her reference pulse rate.

2.2 Boosted Predictive Regression Trees

After transforming EHR data into a relational predicate format, we exploit the
tools of Statistical Relational Learning (SRL) [3] to create models predicting
cardiac arrest. In particular, we employed the SRLBoost framework described
by Natarajan et al. [5] to create boosted sets of weakly-effective regression trees
trained to generate the probability of our target concept, cardiac arrest.
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Algorithm 1. Pseudocode to construct anytime predictive model
Input: positive and negative example trajectories with time-indexed predicate

facts, k hours per model stage, T hours in trajectories, l number of trees
per stage

Output: Boosted predictive model
Initialize: model M = {}

1 hourLast = 0 // Last hour for current model stage.

2 while T − hourLast < k do
3 (We add stages until trajectory ends.)
4 hourLast = hourLast+ k
5 currentFacts = {facts|fact.time ≤ hourLast}
6 m = SRLboost(M, l, currentFacts)
7 M = M +m

8 end while
9 return M

Briefly, regression trees are constructed in a top-down manner [1] so that each
decision node represents an EHR finding at a particular time prior to arrest (in
the positive example learning set). At each iteration, the goal is to identify the
predicate that maximizes the weighted variance. Leaf nodes contain regression
values which can be converted a probability value. The algorithm employs single
path semantics – i.e., each instance only satisfies one path in each tree – and
thus returns one regression value from each tree. They are then added across
the trees and converted to a probability by applying the sigmoid function. The
depth of the trees was limited to 4.

In Algorithm 1, the model M is initially empty. Then, l trees are constructed
using the observations annotated with times from the first k hours of the tra-
jectory. Then, the next stage of the model is created by training an additional l
trees using the initial data augmented by data from observations from the next k
hours, and so on until there are fewer than k hours remaining in the trajectories,
and the predictive model M is returned.

3 Results

We trained the models using 75% of the patient examples, and tested them with
25% of the examples. Example down sampling was employed to deal with the
significant class imbalance.

For training and prediction, we used EHR data from 16 h prior to cardiac
arrest (in those who arrested) and the final 16 h of data (of the 48 h of data
collected) in the control patients. The model was initialized using the first 4 h
of data (16-13 h before arrest), creating a set of 5 boosted regression trees. For
each subsequent 4 h period, another 5 trees were learned using the data from all
of the hours seen so far; the new trees are concatenated to the model obtained
thus far. So, after the data over the entire 16 h trajectory are evaluated, the final
model consists of 20 trees.
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The results are seen in Fig. 1. The models include our concatenated model
(solid red line), a model derived without concatenating previous models but with
increasing number of model trees learned from scratch (dashed blue line), and a
baseline model where 20 trees are learned for each time point (dotted green line).

Fig. 1. ROC-AUC for the models predicting CA.

Presented are the mean, stan-
dard deviation of 5 models. The
model created as a concatena-
tion of models created over pre-
vious time periods exhibits the
best predictive performance.

We conclude that a boosted
model using EHR data con-
verted to a time-indexed pred-
icate format exhibits improved
predictive performance when
the model is constructed by iter-
atively adding new stages to
the existing model as new, more
recent results become available.

4 Discussion

It is interesting to consider why the concatenation of models by adding regression
trees to a previously constructed model provides better predictive performance
than simply starting from scratch at each time point, using all of the earlier
data to construct a new set of regression trees. We speculate that physiologic
data from later time points, which are closer to the time of cardiac arrest in
the training set, are more useful in prediction. Thus, whenever a new model is
created, the greedy nature of the construction selects later data to create the
trees, ignoring earlier data that may be less helpful. However, when we create a
model using only clinical facts from a limited period of time, as in the concate-
nation scheme, the model is forced to do what it can with those data to improve
prediction, using data that might be ignored in a full-on greedy algorithm. This
finding may have implications for other greedy predictive algorithms.

One advantage of our approach is the fact that we produce fairly robust
predictive models from a relatively small number of subjects. In particular, we
create the models using 75% of positive examples, or about 120 subjects. This
contrasts with deep neural network models, which often require thousands of
examples for model training. Moreover, in this non-parametric model, there are
only a very few hyper-parameters to select, avoiding the necessity for extensive
model tuning. Finally, the conversion of clinical results into a predicate format
discharges the need to impute missing data elements; the models depend only
on the findings actually present in the medical record by applying a closed world
assumption.

It is the hope that any medical predictive model will extract causal factors
responsible for the outcome of interest; then, those managing the patient might
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be able to intervene on the identified cause to improve outcome. Such useful-
ness in turn is dependant on model interpretability so that model findings can be
understood, which is a challenge in many machine learning algorithms. For exam-
ple, deep neural network models (DNNs) are notoriously difficult to understand.
Although we are not yet able to meaningfully understand how the boosted trees
in our model can be used to guide medical treatment, the recognizable predicates
represent meaningful medical concepts. There exist methods that reweigh sam-
ples based on the learned boosted model to learn a single, more interpretable,
tree. These techniques are similar to knowledge distillation in DNNs, but do not
generally create a tree that is logically equivalent to the boosted model, and
are therefore unsatisfactory for this predictive task. Explainability is a topic for
future research. Moreover, we aim to more formally evaluate whether there are
advantages to the predicate representation of data as against the more commonly
used vector representation.

Clinical significance: Even as the medical and surgical management of children
with cardiac disease has improved outcomes, CA in the CICU remains a signifi-
cant challenge. In this preliminary work, we have devised an anytime algorithm
to predict this devastating complication; the model holds promise that children
at risk of CA can be identified early, allowing intervention and possibly CA
prevention.
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