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Abstract Magnetic resonance imaging (MRI) has emerged as an important
tool to identify intermediate biomarkers of Alzheimer’s disease (AD) due to
its ability to measure regional changes in the brain that are thought to reflect
disease severity and progression. In this paper, we set out a novel pipeline that
uses volumetric MRI data collected from different subjects as input and classi-
fies them into one of three classes: AD, mild cognitive impairment (MCI) and
cognitively normal (CN). Our pipeline consists of three stages — (1) a segmen-
tation layer where brain MRI data is divided into clinically relevant regions;
(2) a classification layer that uses relational learning algorithms to make pair-
wise predictions between the three classes; and (3) a combination layer that
combines the results of the different classes to obtain the final classification.
One of the key features of our proposed approach is that it allows for domain
expert’s knowledge to guide the learning in all the layers. We evaluate our
pipeline on 397 patients acquired from the Alzheimer’s Disease Neuroimaging
Initiative and demonstrate that it obtains state-of-the-art performance with
minimal feature engineering.

1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative condition that
results in the loss of cognitive abilities and memory, with associated high mor-
bidity and cost to society [21]. Accurate diagnosis of AD, as well as identifica-
tion of the prodromal stage, mild cognitive impairment (MCI) is an important
first step towards a cure and has been a focus of many neuroimaging studies.
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Magnetic resonance imaging (MRI) is a neuroimaging method that can be used
for visualization of brain anatomy with a high degree of spatial resolution and
contrast between brain tissue types. Structural MRI methods have been used
to identify regional volumetric changes in brain areas known to be associated
with AD and MCI, demonstrating the utility of such methods for studying this
disease [21,25]. In particular, structural MRI has identified AD- and MCI-
associated cross-sectional differences and longitudinal changes in volume and
size of specific brain regions, such as the hippocampus and entorhinal cortex,
as well as regional alterations in gray matter, white matter and cerebrospinal
fluid (CSF) on a voxel-by-voxel basis [25]. More recently, MRI data have be-
come the focus of machine learning experiments aimed at classifying subjects
as AD vs cognitively normal (CN) or MCI vs CN. Recent approaches employ
network analysis [21,22] or use machine learning directly on the voxels [25,4].
These approaches, however, only consider a two-way classification paradigm,
AD vs CN, in which a clear decision boundary between these categories can
be easily obtained. In reality, this progressive neurodegenerative disease is a
continuum, with subjects spanning different stages from MCI to AD, making
classification much more difficult.

We develop a novel data mining approach for the significantly more chal-
lenging problem of automatically classifying the subjects into one of three cat-
egories (AD, MCI, CN) given volumetric structural MRI data. Specifically,
we propose a novel knowledge-based approach that allows the combination
of state-of-the-art MRI data processing and modern machine learning tech-
niques. Our pipeline consists of three stages — first is the segmentation stage
that takes volumetric brain MRI data as an input and is then divided into
anatomically relevant regions, second is a relational mining stage that uses
the different segmenting information obtained over the image to build a series
of binary classifiers and the final stage is the combination stage that combines
the different classifiers to provide a single prediction.

The idea underlying this pipeline is simple and akin to the classical mix-
ture of experts idea: rather than choose a single segmentation technique, we
combine multiple segmentation techniques and different imaging data. For
example, the knowledge-based segmentation method uses an atlas-based par-
cellation of the data into 116 anatomically relevant regions from which region-
specific volumetric data can be extracted. Alternatively, one could employ a
knowledge-free segmentation such as Expectation Maximization [5] (EM) that
could result in different number of segments for different subjects depending
on their brain characteristics. Hence, there is a necessity for employing learn-
ing algorithms that can be generalized across different number of segments
or different modalities of the images. For this purpose, we employ a recently
developed Statistical Relational Learning (SRL) [10] algorithm that can learn
the structure and parameters of the combined model simultaneously [20]. SRL
deals with machine learning in domains of inter-related objects where obser-
vations can be missing, partially observed, and/or noisy. It thus addresses the
challenge of applying statistical inference and learning approaches to problems
which involve rich collections of objects linked together in complex relational
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networks. Given the importance of the brain network connectivity in identi-
fying AD, SRL becomes a natural choice due to its ability to model relations
such as neighborhood information. Note that if we employ a propositional
classifier, we have to assume that all the subjects have equal number of seg-
ments, which is not the case in knowledge-free segmentations. As we show in
our experiments, our methods outperform propositional classifiers. Also, the
ability to use domain knowledge is one of the attractive features of SRL algo-
rithms and is an essential attribute from a medical imaging perspective since
the knowledge gained from decades of medical research can be very useful in
guiding learning/mining algorithms.

Most SRL approaches are based on predicate logic that essentially employ
binary classification, whereas here we are addressing the more challenging
three-way classification. In order to still employ existing SRL approaches, we
propose to solve this problem as a series of binary classification tasks (i.e.,
AD vs CN, AD vs MCI and MCI vs CN). This is inspired from the classical
One-vs-One (OvO) classification approach that has long demonstrated to be
very successful in machine learning [9,17]. The results are compared against a
One-vs-all strategy (OvA) where a classifier is learned for each class separately
and each class is discriminated from the others.

The essential idea in OvO is to divide the multi-class classification problem
into a series of binary classification problems between pairs of classes, then
combine the outputs of these classifiers in order to predict the target class.
We use SRL-based classifiers for each binary classification and later combine
them using a few different techniques (weighted combination, a meta-classifier,
etc). The results are compared against a One-vs-all strategy (OvA) where a
classifier is learned for each class separately and each class is discriminated
from the other classes. We also employ two different types of segmentation
algorithms (knowledge-based and knowledge-free) to demonstrate the general
applicability of the pipeline.

We evaluate the pipeline on a real-world dataset, namely the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database of 397 subjects. It should
be mentioned that in the experiments we report no subject selection took
place (to identify good cases vs controls) and instead we used the complete
set of subjects. This particular group of 397 subjects was selected based upon
having both structural MRI and functional metabolic positron emission to-
mography data as part of a separate study. Similarly, we do not employ a
careful feature selection but rather simply use resulting average tissue-type
volume measurements obtained from the segmentation algorithms as features
for our classification. Our results demonstrate that we have comparable or
better performance than the current methods based upon individual binary
and collective classification tasks with minimal feature engineering.

To summarize, the present paper makes the following major contributions:
(1) We introduce a novel pipeline approach that combines several successful ap-
proaches in the learning and data mining communities — image segmentation,
relational learning and OvO classification — to achieve very high classification
performance on the very difficult task of 3-way classification for AD. (2) Our
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Fig. 1 Graphical Representation of the Pipeline.

approach makes it possible to include domain knowledge in the different stages
of the pipeline. For instance, we can employ a knowledge-based segmentation
algorithm or use knowledge of the segments themselves to guide the search
in the SRL algorithm or provide relevance information when considering the
neighbors of a particular region. (3) Our method allows for generalization
across different number of regions for different subjects and across different
imaging data types. (4) As far as we are aware, we are the first to use the
classical OvO classification in the relational setting and demonstrate the use-
fulness of such an approach in a difficult imaging task. (5) Given the results of
the different relational binary classifiers, we explore the use of different combi-
nation functions for combining them. This provides an opportunity to analyze
and understand the nature of the task and that of the classifiers themselves.
(6) We use a subset of the ADNI database without exclusion of cases or careful
selection of controls for the harder 3-way classification task. (7) Finally, the
introduction of this problem to the SRL community is itself a major contribu-
tion. As far as we know, this is the first SRL work that focuses on a medical
imaging classification task, combined with state-of-the art image processing
and segmentation algorithms for this purpose.

We proceed as follows. First, we outline the pipeline and its different stages.
We then present the ADNI database and our experimental results comparing
several different configurations of the pipeline. Finally, we conclude the paper
by outlining some future research directions.

2 The Pipeline

We face the following problem:

Given a set D of tuples {(x1,%1), "+ (Xn, Yn)}, Where each x; is a 3D
voxel image corresponding to a subject and y; is a class label (AD,
MCT or CN). Find a function h that predicts y; given x; such that
the predictions match the data drawn from the distribution that D has
been drawn from.

Indeed, one is tempted to apply a standard classification approach. That is,
we assume examples in D are drawn independently from identical distributions
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(i.i.d.) and assume that there is a function g such that g(x) = y, for every
(x,y) drawn from the distribution, and we aim to derive a function h that
approximates g as closely as possible. Unfortunately, for a problem as complex
as the 3-way classification of AD the standard approaches do not capture the
visual aspects of the image data. They are, however, considered crucial when
an MRI scan is observed by a physician.

Instead, we model the function g as a three stage pipeline i.e. g(x) is
approximated by hs(h2(h1(x))). Each stage h; of the pipeline is designed to
expose interesting and informative aspects of the data. We model the search for
building the pipeline as a sequential search over individual stages. In particular
we solve three problems (1)-(3):

(1) Given the dataset D generate the dataset D' = {(hy(x1),y1),
-+, (h1(Xn), yn)} where each hq(x;) is a representation of the image x;
segmented into regions.

Each hq(x;) is a set of vectors ({(s; 1, f(Si1)) --- (Si,m, [(Si,m))) where each
s;,; is a segmented region and f(s; ;) is a vector of features and neighborhood
information for s; ;. Intuitively, hq(x;) can be viewed as a graph where each
s;; is a node, and there is an edge between two nodes if the corresponding
regions are neighbors in the original image. An important thing to note here is
that two examples in D’ need not have the same number of regions. Also, two
regions need not have the same number of features (because each region can
have a different set of neighbors). This makes it difficult — if not impossible —
to represent D’ by a flat feature vector without extensive feature engineering.
A relational representation, however, is ideally suited.

(2) Given the dataset D’ train a relational probabilistic classifier
on D’ that given example (hq(x),y) generates example (ha(hi(x)), )
where ha(h1(x)) is a distribution over the classes AD, MCI and N, thus

creating datasets Dy ., and Dj.,.

A single classifier in this stage can be replaced by a set of classifiers trained
to produce a distribution between every pair of classes (OvO). As mentioned
earlier, we use a relational classifier for this purpose. Since D’ is a relational
database, we cannot use propositional classifiers and have to resort to rela-
tional methods. Additionally relational methods are extremely well suited to
leverage neighborhood information.

(3) Given the classifiers learned from the previous stage, i.e., hs for
the three different combinations design a combination function hg that
combines their results of the multiple classifiers in the previous step.

The resulting pipeline (1)-(3) is illustrated in Fig. 1. Next we explain each
of the stages (1)-(3) in detail.

2.1 Stage 1 — Image Segmentation

To segment volumetric brain MRI data into a number of regions, we used two
different segmentation techniques, namely (1) a knowledge based segmentation
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Fig. 2 AAL atlas segmentation showing the different regions of interest in the brain (Best
viewed in color)

method using an anatomic atlas and (2) a knowledge-free segmentation tech-
nique based on Expectation Maximization (EM). (1) The atlas-based method
parcellates the MRI data into different anatomically relevant regions whereas
(2) The EM method divides the brain MRI data into different homogeneous
regions based on T1-weighted voxel signal intensity (which represents the com-
bination of three different cerebral tissues: gray matter (GM), white matter
(WM) and cerebro-spinal fluid (CSF)). While the former method incorporates
the knowledge of anatomical parcellations of volumetric brain data, the output
segments generated by the latter method are free from a priori knowledge and
clinical anatomical significance.

Atlas-based Segmentation:

The individual subject MR images were segmented into GM, WM and
CSF regions, then spatially normalized to Montreal Neurologic Imaging (MNI)
space and modulated with the Jacobian determinants of the warping proce-
dure to generate volumetric tissue maps using the Dartel high-dimensional
warping and the SPM8 new segment procedure as implemented in the VBMS
toolbox!. The resulting modulated tissue volumetric maps were further par-
cellated into 116 regions using the Automated Anatomic Label (AAL) atlas
[2,1] as implemented by the wfu pickatlas[18]. Fig. 2 shows some of the AAL
regions. The volumetric data from each AAL region was used as features for
input of SRL based classifiers. We present these features in the next section.

Expectation Maximization: For EM, we use voxel intensity of spatially
normalized volumetric T1-weighted MRI to find natural clusters within im-
ages. EM depends on soft assignment of voxels to a given set of partitions.
Every voxel is associated with every partition through a system of weights
based on how strongly the voxels should be associated with a particular par-
tition. The Expectation step is defined by:

2 2
p(x = zi|p = py) e~ (@i—p;)*/(207%)
E[ZU] = & J = =

o —(@i—pn)?/(20°)
Y. ple=wilp=m) Y e

This equation states that the expectation or weight z;; for voxel i with respect
to partition j equals the probability that x is voxel x; given that u is parti-

1 http://dbm.neuro.uni-jena.de/vbm.html
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tion p; divided by the sum over all partitions k of these probabilities. The
02 in the second expression represents the covariance of the voxel intensity.
Once the E-step has been performed and every voxel has a weight or expec-
tation for each partition, the Maximization step begins. This step is defined
by p; + Zzl Elz;j]z; . This equation states that the partition value j is
changed to the weighted average of the voxel values where the weights are the
weights from the E step for this particular partition. This EM cycle is repeated
for each new set of partitions until the partition values no longer change by
a significant amount. Note that the EM algorithm assumes that the initial
partition values are close to the natural clusters of the given voxels. We select
the initial partitions randomly. Then, we run the EM algorithm for a given
number of partitions and choose the number of partitions having minimum
Akaike Information Criterion (AIC) [13]. We assign each voxel to a particular
partition having largest posterior probability for the voxel, weighted by com-
ponent probability. Finally, we find the segments or connected components
from each volumetric T1-weighted MRI by assigning the neighboring voxels
belonging to the same partition into the same segment.
Now, we have everything necessary to begin stage (2).

2.2 Stage 2 — Boosted Relational Models

Recall that the output of the stage (1) is the complex network of the brain with
information about each region. Such networked information can elegantly be
represented using predicate logic. To so, we have to decide on the vocabulary,
i.e., the predicate and constant symbols. We convert this data to predicate
logic. Some of the predicates we used are presented in Table 1. The predicate
names denote the attributes while the parameters are variables that can take
values from a certain domain. Note that the attributes of the regions are
defined in a logical form that allows for different number of regions for different
persons. Similarly, the predicate adj allows for neighborhood definitions and
this will allow us to encode an arbitrary network structure of the brain and
does not constraint the number of neighbors for a region. We denote all the
query predicates (ad, cn, mci) as y and all other ones as non-query predicates
as X.

Now, to solve problem (2), we employ functional gradient boosting. Assume
that the training examples are of the form (x;,y;) for ¢ = 1,..., N and y; €
{1,..., K}. The goal is to fit a model P(y|x) oc e¥¥*). The standard method of
supervised learning is based on gradient-descent where the learning algorithm
starts with initial parameters 6y and computes the gradient of the likelihood
function. Dietterich et al. [6] used a more general approach to train the po-
tential functions based on Friedman’s [8] gradient-tree boosting algorithm
where the potential functions are represented by sums of regression trees that
are grown stage-wise. Since the stage-wise growth of these regression trees are
similar to the Adaboost algorithm [7], it is called as gradient-tree boosting.
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Predicate Explanation
hasregion(p,r) Person p has region r
centroidx(P, R, X) centroid of region R is X
avgSpread(P, R, S) average spread of R is S

size(P,R, S) Size of R is S

avgWMI(P, R, W) | Avg intensity of white matter in R is W

avgGMI(P, R, G) Avg intensity of gray matter in R is G
avgCSFI(P, R, C) Avg intensity of CSF in R is C
variance(P, R, V) variance of intensity in R is V
entropy(P, R, E) entropy of R is E
adj(R1,R2) R1 is adjacent to R2

ad(P) P has AD

mci(P) P has MCI

cn(P) P is cognitively normal

Table 1 Examples of predicates used in the pipeline. Here, P stands for a patient and R
for a region. The last three predicates are the query predicates that are discriminated by
our classifiers.

Functional gradient ascent starts with an initial potential )y and iteratively
adds gradients 4;. This is to say that after m iterations, the potential is given
by

Ym =0+ A1+ ...+ Ap, (1)

Here, A,, is the functional gradient at episode m and is
Ay = T X Eﬂﬂ,y[a/awm—ll()g P(?J|9C;1/Jm—1)] (2)

where 7, is the learning rate. Dietterich et al. suggested evaluating the gradi-
ent at every position in every training example and fitting a regression tree to

these derived examples i.e., fit a regression tree h,, on the training examples
[(%i,yi), Am(yi; x;)]. They point out that although the fitted function h., is
not exactly the same as the desired 4,,, it will point in the same direction
(assuming that there are enough training examples). So ascent in the direction
of h,, will approximate the true functional gradient. The same idea has later
been used to learn relational models [20], relational policies [16,19], relational
CRFs [11] and relational sequences [15].

We denote all the non-query predicates as x and the query predicates (ad,
nor, mci) as y. Hence, we are interested in learning P(y|x) where P(y|x)
= V) /37 W), The main idea in the gradient-tree boosting is to fit a
regression-tree on the training examples at each gradient step. In this work,
we replace the propositional regression trees with relational regression trees.

Theorem 1 The functional gradient with respect to ¥(y; = 1;x;) of the like-
lihood for each example (y;,x;) is
dlog P(yi; %)

Dby = Lixp) = 1)~ Py =) (3)

where I is the indicator function that is 1 if y; = 1 and 0 otherwise.
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Fig. 3 Relational Functional Gradient Boosting. This is similar to the standard FGB where
trees are induced in stage-wise manner the key difference being that the trees are relational
regression trees.

The proof involves derivation of the gradient w.r.t 1) and is quite easy to
prove. Following prior work [20], we use Relational Regression Trees (RRTs)[3]
to fit the gradient function for every training example. In our case, a training
example is a patient. These trees upgrade the attribute-value representation
used within classical regression trees. Each RRT can be viewed as defining
several new feature combinations, one corresponding to each path from the
root to a leaf. The resulting potential functions still have the form of a linear
combination of features but the features can be quite complex.

This idea is illustrated in Figure 3. First a tree is learned from the training
examples and this tree is used to determine the weights of the examples for the
next iteration (which in this case is the difference between the true probability
of being true and the predicted probability). Once the examples are weighted, a
new tree is induced from the examples. The trees are then considered together
and the regression values are added when weighing the examples and the
process is repeated.

At a fairly high level, the learning of RRT proceeds as follows: The learn-
ing algorithm starts with an empty tree and repeatedly searches for the best
test for a node according to some splitting criterion such as weighted variance.
Next, the examples in the node are split into success and failure according to
the test. For each split, the procedure is recursively applied further obtaining
subtrees for the splits. We use weighted variance on the examples as the test
criterion. In our method, we use a small depth limit (of at most 3) to terminate
the search. In the leaves, the average regression values are computed. We aug-
ment RRT learner with aggregation functions such as count, mazx, average that
are used in the standard SRL literature [10] in the inner nodes thus making
it possible to learn complex features for a given target. These aggregators are
pre-specified and the thresholds of the aggregators are automatically learned
from the data. We restrict our aggregators to just the three mentioned earlier.
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In the case of continuous features such as intensity level, size, spread, etc., we
discretize them into bins.

Finally, to prepare for stage (3), we represent the distribution over the
classes as a set of RRTs on the features. For example, when we classify AD
vs. CN patients, we learn 20 RRT's for predicting if the person has AD. Since
it is a binary classification, it is sufficient to learn one set of 20 trees for the
class AD. Similarly, we learn two other sets of 20 trees each for predicting AD
vs MCI and CN vs MCI leading to a final model with three sets of 20 trees
each. In the case of OvA, there will be three sets of 20 trees - one each for
predicting AD, MCI, and CN given the rest of the classes.

Now, we have everything together for the final stage (3) of our pipeline.

2.3 Stage 3 — Combining Classifiers

We investigated two alternatives. We first present our One-vs-One (OvO)
method before explaining the One-vs-All (OvA) strategy. The result of previ-
ous step is a set of probabilistic classifiers for each pair of classes from AD,
MCI and CN (in essence, 3 classifiers). So, now there is a need to combine
these multiple classifiers. For a detailed review, see [9]. Let us denote each
classifier as ¢*, k = 1,2,3. We have used the following combination functions:

— Voting: Each ¢* outputs a prediction and the class has the maximum vote
ie., argmaz. >, [I(y* = )], where y* is the predicted label of the k" classifier
and c is the class.

— Weighted Voting: In this case, class = argmaz. Y . [w* - P(y* = ¢)]. We
derived a gradient for the log likelihood of the training data and also used
a grid search over the weight space and report the results of the different
methods.

— Pairwise Coupling: We considered the PC method [12] where the goal is
to determine the posterior over each of the classes from the estimated joint
distributions.

— Classifier method: We used the output of each OvO classifier to train a
proposional classifier such as SVM, Bagging etc. that combines the output of
these different classifiers to make its final prediction. The input of the new
classifier is essentially the predictions of the classifiers of the previous stage.
More precisely, the input is a set P = (pi, pi, ..., p3) for each patient i, where
p;‘-' is the posterior probability of the class j as predicted by the classifier k.
Hence, we aim to learn a function hg such that h3(P) = y; where y; is one of
AD, CN or MCI. The advantage is that while the use of weights assumes that
the OvO results are combined using a linear function, the use of classifiers
makes it possible to use non-linear combinations of the OvO results leading to
more expressive models.

The OvA strategy employs three classifiers. Each of them discriminate class j
from j’ € class\ j. We use a simple aggregation method called as Mazimum
confidence strategy which is similar to the voting strategy presented earlier.
The output class is taken from the classifier that has the largest posterior
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probability argmax. p.. For more details on the OvA aggregation, please refer
to [9].

Given the above combination functions, the net result is the prediction of
the disease state for the patient given the T} weighted scan. Hence the resulting
classifier h is essentially a nested classifier h3(ha(hi(x))); the final output of
our pipeline (1)-(3).

3 Experimental Setup

In order to investigate the performance of the proposed pipeline for three-way
classification of Alzheimer patients from structural magnetic resonance images
of the brain, we followed the following experimental protocol.

ADNI Subjects. Data used in this study were obtained from the Alzheimer’s
disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNTI)
sponsored by the NIH and industrial partners. The primary goal of ADNI is
to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can measure the progression of mild cognitive
impairment and early Alzheimer’s disease. Further information can be found
at www.adni-info.org. We used data available from 102 CN (average age 75.8,
62 male, 40 female), 92 AD (average age 75.5, 55 male, 37 female), and 203
MCI (average age 74.8, 137 male, 66 female) participants.

Set up. Each subject’s T1-weighted MRI data was used (2122945 voxels).
We used the spatially normalized voxel data to run EM and the pre-processed
modulated segmentation maps for the AAL segmentation algorithm. For each
segment, several features were extracted - avgWMI, avgGMI, avgCSFI (which
are the average value across voxels from the WM, GM and CSF modulated
tissue maps generated in the SPM new segment procedure), size, centroid and
spread of each segment. The centroid is a three-dimensional attribute. Also
included were the neighborhood information about the segments, where the
number of neighbors for each segment can be very different and necessitates
the use of SRL-based algorithms.

We used 10-fold cross validation in all our experiments. For the OvO based
learners, we created training sets for each classifier (AD vs CN, AD vs MCI,
MCI vs CN). Hence the cases and controls were chosen separately for each
classifier. To ensure correctness of comparison, we went through the entire
data base and created 10 different folds such that each subject was in the test
set for one fold and in the training for the rest. Given this, for each fold, we
used the training set data to create three different training sets for the OvO
classifier. For instance, when creating the training set for the first fold of AD
vs CN classifier, we remove all the subjects who had MCI in that training
fold. This ensured that we trained on the same set of subjects for all the three
classifiers in each fold and that the test examples were never seen by any of
the three classifiers.

Once the individual classifiers were learned, we used the common training
set to learn the combination function for combining their predictions. The
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common training set is the union of the three training sets and do not contain
a single example from the test fold. Once the combination function is learned
the predictions were made on the test fold and the results averaged over 10
runs. For the OvA classifier, things are simpler in the sense that we can use
just the 10 training and test sets and evaluate the performance as there is
no need for creating smaller training sets from the given training set. For the
propositional classifiers we used the default functions of Weka and LibSVM to
create the 10 folds.

It should be reiterated that these training and test folds were chosen at
random — no careful selection of cases vs controls was performed. Also, we did
not perform any major feature selection. The features of each segment were
used as they are. We preprocessed the data only to convert it into predicate
logic format. Also, since most SRL methods are based on predicate logic and
almost all the features are real numbers in our problem, we had to discretize
these features. Each feature was discretized into several bins based on the
histograms of values and natural points for discretization were picked auto-
matically using filters in Weka. Using domain knowledge in this step (clinically
relevant discretizations) remains one very interesting future direction.

4 Results

We compare several versions of the algorithms in this section, including the
list of propositional classifiers on the AAL segmented data and the relational
classifiers using both segmentation methods (EM and AAL) as well as different
combination functions. To understand the need for segmentation, we used
modulated gray matter voxel data with LibSVM. We report these results as
well. We did not use any segmentation algorithm for this setting of SVM,
which we will denote as SVMMG.

— Propositional Classifiers - Naive Bayes (NB), Decision Trees (J48), SVMs,
AdaBoost and Bagging on the AAL data and SVMs with gray matter data
(that we denote as SVMMG).

— Relational OvO with AAL segmentation - Using various combina-
tion functions: Weighted voting with grid search (AALGS), gradient descent
(AALGD), bagging (AALB), AdaBoost (AALA) and Pairwise coupling (AALPC).
— Relational OvO with EM segmentation - Also using various combi-
nation functions: Weighted voting with grid search (EMGS), gradient descent
(EMGD), bagging (EMB), AdaBoost (EMA) and Pairwise coupling (EMPC).

— Relational OvA - With AAL (OvAAAL) and EM (OvAEM).

The best parameter settings for propositional classifiers are presented in
Table 2 and these were obtained using cross-validation. First, we compared
the propositional classifiers with AAL segmentation. Results are presented
in Figure 4.a. We used Weka and used the multi-class classification setting.
As can be seen from the figure, the propositional algorithms do not show a
good performance using the AAL data. We also present the results of running
LibSVM on the voxel data (i.e., without any segmentation - SVMMG). As can
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[ Classifier [ Parameters ]
J48 C0.25M2
SVM C 1.0, L 0.01, P 1E12,
NO,V1, W1RBF
AdaBoost P 100, S 1,110
Bagging P 100, S 1,110, M 2
Logistic R 1.0E-8, M -1

Table 2 Parameter settings for propositional classifiers.

be seen, the performance is slightly better but still is not comparable to the
performance of the best relational 4+ segmentation algorithm (AAALB) which
is presented for comparison purposes. Measuring accuracy over the entire data
set can be misleading [14], hence, we also compute the area under the curve
for the Receiver Operating Characteristics curv (AUC-ROC). The AUC-ROC
has long been viewed as an alternative single-number measure for evaluating
the predictive ability of learning algorithms. This is because the AUC-ROC is
independent to the decision threshold and invariant to the priors on the class
distribution.

We also evaluate different versions of the relational learning algorithms.
Results are presented in Figure 4.b. We also included the OvA classifiers with
AAL and EM in the results. It can be seen that the best performing algorithms
use AAL and some combination function based on a classifier. AALB has the
best results among the different algorithms presented in the figure. The other
classification functions did not have nearly as good a performance as bagging
but are significantly better than the propositional algorithms. This clearly
shows that treating the problem as a multi-class classification problem may
not be the best solution (OvA methods also do not perform well). Instead,
posing the problem as a slightly more complex OvO problem significantly
improves performance.
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Fig. 4 Classification performances in terms of “Area under the ROC curve” of the different
algorithms: (a) propositional classifiers (blue) compared against the relational AALB (red),
and (b) relational classifiers. (c) Parameter settings for propositional classifiers

A consolidated version of the results for all the classifiers is presented in
Table 3. In general, the relational methods have a superior performance com-
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Classifier AUC-ROC Classifier AUC-ROC
J48 | 0.540 £ 0.01 SVM 0.595 + 0.01

NB | 0.554 £0.01 Bagging 0.606 4+ 0.01
Adaboost | 0.591 £0.01 SVMMG | 0.619 £ 0.01
EMPC | 0.514+£0.04 | OvAAAL | 0.605 % 0.01
EMB | 0.565 £ 0.02 EMA 0.609 &+ 0.03
OvAEM | 0.544 + 0.02 AALGS 0.551 + 0.09
AALGD | 0.541 £0.06 AALPC 0.737 + 0.09
AALA | 0.765 £ 0.07 AALB 0.769 + 0.05

Table 3 Consolidated results of the classifiers.

pared to the propositional algorithms with AAL segmentation. For instance,
AALA and AALB have scored the best on this data compared to the standard
classifier methods (last row of the table). Comparatively, the first three rows
present the standard machine learning classifiers on the same data. As can be
seen there is significant difference between the first three rows and the last
row of the table.

Note that AALPC (2nd last row, third column) which is the method that
uses pairwise coupling as against a classifier has a competitive performance
compared to AALB. This justifies observations made earlier [9] that pairwise
coupling can be a very promising method to combine multiple OvO classifiers.
The knowledge-based segmentation algorithm of AAL also has a higher perfor-
mance than the knowledge-free EM algorithm. It remains an interesting future
direction to explore the use of domain knowledge to guide the EM algorithm
to better segment the images in order to increase performance. While this may
not be very useful in our current task, in other problems such as identifying
MCI patients who are likely to develop AD, it may be potentially useful to
combine the clinical knowledge for guiding the segmentation algorithm and
the classifier.

To understand how the methods performed on individual classification
tasks (AD vs CN, AD vs MCI, MCI vs CN), we also present the confusion
matrices in Table 4. We include a single confusion matrix for each of the three
OvO classifiers using the AAL segmentation method. Consideration of the
matrices will show that, while we can achieve a relatively high true positive
rate (TPR) and true negative rate (TNR) when classifying AD v CN and AD
v MCI, classification of MCI v CN is a more difficult task. Hence, we see a
proportionally larger number of false negatives in the third confusion matrix.
It can be clearly seen that while we are tackling the hard problem of 3-class
classification, it also helps in the two-class classification case. More precisely,

learning in the harder task helps the classifiers to improve on the easier task.
We present the segments that are used in our learned models in Figure 5.

These are the regions that discriminate between the classes and are identified
by learned algorithms and correspond to the medically relevant regions as ver-
ified by our Neuroradiologists. In order to construct this Figure, we extracted
the regions used by the trees in the internal nodes and plotted these regions
on the different views. The goal of this exercise was to evaluate if the learned
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Confusion Matrices
AD v CN | AD v MCI | MCI v CN
Pos | Neg | Pos | Neg | Pos | Neg
Pos 64 18 27 60 149 44
Neg 16 86 30 168 76 26

Table 4 Confusion matrices for the three classifiers

models confirm to known regions or if they are considering non-important
regions for classification.

The first, second and third columns represent coronal, sagittal and axial
view of the same slice of a patient respectively while the rows correspond to
predicting AD (vs CN), AD (vs MCI) and MCI (vs CN) respectively. Our
proposed algorithm shows consistency in detecting the regions that are known
clinically to be affected by AD [21] (regions of interest — for example, number 37
- 40 hippocampus, 49-55 occipital, 59-62 parietal and 81-85 temporal). This
shows that the learning algorithms perfectly compliment the segmentation
algorithms in this task. While in previous methods the neurologists had to use
the specific regions for correlations, our method identifies them automatically
and uses them in the prediction models.

Our results show that SRL algorithms better interact with the segments
created by AAL. It is also clear that while learning to predict three classes,
individual classifiers are themselves quite predictive. Finally, it is very encour-
aging that the algorithms are able to identify the segments that are known
to be clinically interesting in predicting AD. Most of the methods to-date
have computed the correlation between the regions for predicting AD, but our
methods automatically identify the interesting segments for this 3-class task.

5 Conclusion and Future work

We have addressed a challenging three class classification problem from MRI
images. Specifically, we proposed to solve the problem of classifying patients
into one of AD, MCI or CN using a pipeline that consists of three different
stages. First is a segmentation stage where the regions are grouped into (med-
ically relevant) regions. The second stage is a relational learning stage which
learns on the network created by the previous stage. This stage essentially
uses a series of binary classifiers for multi-class classification. The final stage
is the combination stage that combines the results of these multiple classifiers.
The use of a graph network (with varying number of nodes) in the first stage
necessitates the use of a relational learning algorithm. Our extensive experi-
mental results demonstrate that the pipeline obtains state-of-the-art perfor-
mance with minimal feature engineering. The pipeline is the first application
of SRL to MRI classification, and the results clearly illustrate the benefits of
using a relational representation in the first and second stage of the pipeline. It
naturally accounts for varying numbers of segments, suits a knowledge-based
segmentation, and scales well from the two-class to the three-class problem;
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Fig. 5 Predictive segments as identified by our pipeline (different colors indicate different
regions).

while having a reasonable performance in the two-class setting, propositional
approaches yield a significantly lower performance in the three-class case.
Our work provides several interesting avenues for future work. One of our
future directions is to use the knowledge of the domain experts in guiding
the segmentation algorithms to identifying more clinically relevant regions.
Due to the use of logical variables and unification, statistical relational models
generalize well. Hence, we plan to apply the algorithms to more challenging
tasks such as identifying those MCI patients who are affected by AD later in
life. Our initial results indicate that clinical data can be very useful for this task
when combined with MRI scans. We plan to combine the two different data
types to determine whether their combination is an improvement over either
of them separately. Also, our current work considers only 77 weighted images.
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There are other types such as T, and FLAIR and we intend to generalize
the algorithms to determine if including these other weighted image types
can improve the prediction task. It would also be interesting to employ local
learning methods such as the one presented in Tang et al. [23] for learning
to classify from a single image. Finally, it might also be possible to perform
a two stage learning task by running algorithms such as PCA to reduce the
dimensionality and then learn a similarity metric between the classes [24].
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