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Abstract—In order to facilitate better estimations on coronary
artery disease conditions of a patient, we aim to predict the
number of Angioplasty (a coronary artery procedure) by taking
into account all the information from his/her Electronic Health
Record (EHR) data. For this purpose, two exponential fam-
ily members—multinomial distribution and Poisson distribution
models—are considered, which treat the target variable as
categorical-valued and count-valued respectively. From the per-
spective of exponential family, we derive the functional gradient
boosting approach for these two distributions and analyze their
assumptions with real EHR data. Our empirical results show
that Poisson models appear to be more faithful for modeling the
number of this procedure.

Keywords-clinical events prediction; exponential family; prob-
abilistic models; EHR;

I. INTRODUCTION

Coronary Artery Disease (CAD) is the leading cause of
death for people in the United States and killing more than
370,000 people annually [1]. A serious condition a lot of
CAD patients suffer from is the narrowed or blocked artery
by plaque. One of the common procedures to restore blood
flow through narrowed arteries is Angioplasty. However, a
considerable amount of patients treated with angioplasty often
need repeat revascularization procedures [2]. While there is
research investigating the predictive factors of restenosis [3]—
[6], there is no significant research that focuses on the factors
over a substantial period of time to discover their effect on
the number of procedures. We do not only aim to investigate
the association between the restenosis and predictive factors,
but also to predict the count of restenosis. This allows us to
better estimate a new patient’s condition by analyzing his/her
historical health record data. Since the number of angioplasties
a patient needs usually associates with the severity and com-
plexity of his/her CAD condition, modeling and predicting the
count of angioplasties can provide better understanding on the
future CAD conditions and hence facilitate better treatment
plans in advance.

Faithfully modeling such count data could potentially pro-
vide a better way to exploit the large-scale health records data
in order to reveal the development patterns of certain diseases
or facilitate the discoveries of the significant influential factors
on a specific medical condition. An important property of
such count data is that these variables typically only take
the non-negative integer values. Most of the previous work
that employed machine learning algorithms modeled such
count variables as multinomial distributed [7]. The key issue
with this assumption is that it places an upper bound on the
counts (number of readmissions or procedures for instance)
of the target. While in many domains, it is possible to obtain
a reasonable upper bound, in other domains, this requires
guessing a good one.

Another common assumption that most prior work assumed
is that of the Gaussian assumption over these count variables.
However, low counts can lead to the left tail of the Gaussian
distribution predicting negative values for these counts. Sub-
sequently, there are research directions [8]-[10] that model
such data from a different perspective by assuming that these
counts are distributed according to a Poisson. Such models
have been extended to learning dependencies among multiple
Poisson variables as Poisson graphical models. Poisson models
have been increasingly employed in the context of the count
data [11]-[13]. However, little research has been performed
on comparing these two different probability distribution as-
sumptions in real-world medical domains.

In this paper, we target the number of Angioplasty as it is
a significant indicator for the severity of patients’ coronary
disease conditions and aim to examine various probabilistic
graphical models on predicting the count of Angioplasty by
learning from the historical medical conditions of the CAD
patients. To model such count variables, we employed prob-
abilistic graphical models with two different assumptions on
the conditional probability distributions of the target variable.
One is multinomial distribution assumption which assumes



that each sample is independently extracted from an identical
categorical distribution, and the numbers of samples falling
into each category follow a multinomial distribution. Another
assumption is the Poisson distribution which states that each
sample is a instance of a count variable following Poisson
distribution with one parameter \.

It must be mentioned that such assumptions on the data
probability distributions cannot be examined by simply em-
ploying certain statistical analysis methods, such as data trans-
formations, on the interested variable alone. This is because
most of the time we also aim to know how other variables in
the domain influence the target variable, and which assumption
more faithfully fits the conditional probability distributions of
the target variable given the variables on which it depends.

Consequently, we propose a set of experiments to model
the dependencies among the variables and at the same time
examine these probability distribution assumptions by em-
ploying probabilistic graphical models with the two different
probability distributions from exponential family. Our key aim
in this work is to investigate the impact of different assump-
tions in modeling this challenging task. As a general form of
most probabilistic graphical models, exponential family [14]
provides a better perspective from which the fundamental con-
nection between their theories as well as learning algorithms
can be revealed. We will take the perspective of exponential
families and illuminate the theories and boosting learning
approaches for these two probability distribution assumptions.

We make the following key contributions: first, we consider
multiple base learners in the context of gradient boosted
multinomial and Poisson models for the task of predicting
the number of Angioplasty procedures; second, we consider
different types of gradient updates for learning Poisson mod-
els; third, we consider different types of modeling for the
predictive features when learning these models. Finally, we
perform comprehensive analyses on the real EHR data and
demonstrate the usefulness of exponential family distributions
for this interesting task.

The rest of the paper is organized as follows: we first present
the background on gradient-boosting approaches and exponen-
tial family concepts. Next, from the perspective of exponential
families, we derive the gradient updates for both multinomial
and Poisson distributions based on additive updates. We then
explain the EHR data that is employed for the task. Finally, we
present our extensive real-world empirical evaluation before
concluding the paper.

II. BACKGROUND
A. Functional Gradient Boosting

The standard gradient ascent approach learns graphical
models by optimizing a loss function w.r.t. the natural param-
eters in the probability distribution assumptions on the target
variable, e.g. the parameters {p1, p2, ..., px } in the multinomial
distribution or the parameter A\ in the Poisson distribution.
Typically, it starts with initial parameters and iteratively adds
the gradient of an objective function w.r.t. the parameters, till
it finds the optimal parameters that most faithfully fit the data.

Friedman proposed the functional gradient boosting [15]
which defines a regression function ¢ w.r.t. each example x;.
The gradients of the objective function are derived with respect
to the function parameters ¢(x;). The key idea behind this
approach is that, instead of computing the overall gradient,
the gradients are approximated by computing them for each
example, i.e. SLL(x)
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These gradients can be easily understood as the difference
between the true label and the current predicted probability of
an example. These gradients are computed for each example
and form the regression dataset. To generalize from these
regression examples, in each iteration ¢, a regression function
1@ (generally regression tree) is learned to fit to the gradients
(which effectively become the weight of each example). The
final model,

e =P+ 1+ - + 1y ()

is a sum over these regression trees. Unlike AdaBoost, this
FGB approach learns a probabilistic classifier. Also, most
off-the-shelf regression learners can be used for fitting the
examples in each gradient step.

B. Graphical Models as Exponential Family

Exponential Family [14] provides a general way to represent
the probability distribution as a density p continuous w.r.t some
base measure h(x) [16]. This base measure h(x) could be the
counting measure or the ordinary Lebesgue measure on R.
Many common distributions belong to the exponential family,
such as the normal, exponential, gamma, Dirichlet, Bernoulli,
Poisson, multinomial (with fixed number of trials) and etc.
Generically, there could be numerous different distributions
that are consistent with the observed data, so this problem
can be converted to find the distribution that faithfully fits
the data while has the maximal Shannon entropy [16]. Hence,
the exponential family is defined as a family of probability
distributions whose probability mass function (only consider
the discrete variables in this paper) can be represented with a
parameterized collection of density functions:

px (z|0) = h(z) exp{(0, ¢(z)) — A(0)},

where ¢(z) is a collection of sufficient statistics, 6 is an
associated vector of exponential parameters and A(f) is the
log partition function which ensures px (x|f) being properly
normalized.

III. LEARNING EXPONENTIAL FAMILY MODELS WITH
FUNCTIONAL GRADIENT BOOSTING

In this paper, we aim to answer the following question:
which assumption of a probability distribution more faithfully
fits the number of a patient’s cumulative Angioplasty surg-
eries given his/her historical medical conditions? To this effect,
we employ graphical models of exponential family with differ-
ent assumptions on the conditional probability distribution of
the target variable. We denote the target discrete variable as y



(i.e. number of Angioplasty), the other attributes related to the
patient’s medical conditions as variable set X. As in graphical
models, each node corresponds to one random variable and we
will use nodes and variables interchangeably. We refer to those
variables which have dependence correlations with the target
variable as parent nodes if they are captured by the graphical
models. The subscript ¢ indexes the samples indicating the

h" patient. The subscript y;x indicates the corresponding
sufficient statistics (i.e. ¢(y; X)) or exponential parameters
(i.e. 0y, x) in a certain graphical model which could be a linear
function such as in Logistic Regression and Naive Bayes or
a non-linear models such as Decision Trees, Neural Networks
and Poisson Dependency Networks. So, we can re-write the
exponential family in terms of one example as:

Py;;x
h(yi; Xi) exp{(0y,;;x

Since the target variable y has discrete values, we choose
to evaluate two exponential family members— multinomial
distribution and Poisson distribution. We present the gradient
updates for the two distributions in the context of our learning
algorithm - gradient boosting in the following subsections.

A. Functional Gradient Boosting for Graphical Models with
Multinomial Distribution Assumption

First, we will present the objective function for optimizing
the log-likelihood under the multinomial distribution assump-
tion and the corresponding gradient. If we assume that given
the observations in the learned discriminative model, the
Angioplasty count follows a categorical distribution with
parameters {py1,...,p,-} where >, p,. =1 and {y',...,y"}
indicate possible values y can take, the probability distribution
over the number of all possible values is a multinomial
distribution:

k+1
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where y € {0, 1, .., r—1} and r — 1 is the maximum
number of Angioplasty a patient can have in the EHR.
According to the definition in Equation (3), the parameters
in the general form of exponential family can be calculated
through the natural parameters in this multinomial distribution
by:

¢(y; X) = [Ny, ..., Ny]"
ey;X:[lnpyl, . lnpyr]T
[They Nyv!
A(Gy;X) =0

h(y; X) =

The gradients of the logarithm of the exponential family
probability function w.r.t. the natural parameter p,+ equals to:

OLL
4)
prk (
0
p) Inh(y; X) + (0y.x, d(y; X)) — A0y x)
Dyk
00y x 9A(0y;x)
= 7’7 7)( N NS kel
<amk¢@ ) Dp,-
B,

DPyr
Because of the simplex constraint ) , p,» = 1 and the value
range of a probability 0 < p,» < 1, in order to optimize the
parameters separately while keeping these constraints satisfied,
the multinomial regression models are usually converted into
the form of a log-linear model with a new Bset of parameters
{Byr, ..., By} which satisfies p,r = —* i’;’yk .

To learn such log-linear models with muftfnomlal variables
with functional gradient boosting, we need to view this
probability distribution assumption from the perspective of a
single patient (y;; X;) each of which attached with a function
parameter v,,.x,. Instead of optimizing the log-likelihood
function w.rt. the natural parameters {8,1, .., [y},
functional gradient boosting optimizes the objective function
w.r.t. the function parameter 1)y,.x, for every example. Under
the multinomial distribution assumption, the probability of a
single patient is defined as a function of parameter 1y,;x,
as: Py, x, = ;Zi X;k < . The probability for this patient

to have k times of Angioplasty surgery can be treated as a
categorical distribution, in which case the sufficient statistics
in the general exponential family form (3) can be derived
as ¢(yi; X;) = [Ly—yrs o, Iy=y|T where I is the
indicator function. So the optimization problem w.r.t. p,x can
be converted to an optimization problem w.r.t. 1, x. The point-
wise gradients of the logarithm of function (3) w.r.t. 1, x, can
be derived by substituting Equation (4) as:

oLL; 1
OMyi—yrix,  Pyixi Oy—ykix,

= I(y; = y* Xi) = pyi = y"; Xo).

This is the gradient function employed by regression mod-

els with multinomial distribution assumption when learning

with functional gradient boosting. At each step, a regression

function is fit to these gradients. We consider two types of
regression functions - regression trees and neural networks.

apyi§X'i

(&)

B. Functional Gradient Boosting for Graphical Models with
Poisson Distributions

The other case we consider is the Poisson distribution
assumption, in which we employ discriminative Poisson model
whose structure is similar as a reversed Naive Bayes but
the conditional probability distribution of the target variable
follows Poisson distribution. In other word, we assumed that
given the parent nodes in the learned discriminative Poisson



model, the probability distribution of the Angioplasty count
follows Poisson distribution:
AVe
ply) = T
where y € {0, 1, 2 ...}. The components in the general
exponential family form (Equation (3)) can be converted from
the point-wise perspective as :

Ay Xi) = v

9yi§Xi =In )\yi§Xi
1

h(yi; Xi) = ol

A(le;Xi) = eeyi;xi = >‘yi:,X7;

Then, the point-wise gradients of the log-likelihood function
w.r.t. the natural parameter )\, x, can be derived as:

OLL;
6
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0
= In A(yi; Xi) + (0y,.x, ¢(yi; X)) — A(By;:x;)
8)\yi§Xi
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Here, \,,.x, is the Poisson parameter for the probability

distribution of the target variable of the i" patient given the
learned discriminative Poisson model and the values of y;’s
parent nodes X;, which are embodied by the subscript . x,.

For functional gradient boosting, we define the function pa-
rameters as ¥y, x, so that A, x, = e¥vXi, in order to satisfy
the constraints on A which is A > 0. Since exponential is a
monotonic increasing function, the optimal Poisson parameters
A can be found by boosting the log-likelihood function with
respect to the function parameters . Based on Equation (6),
the point-wise gradients of the log-likelihood function of (3)
W.I.L ty,.x, is derived as:

OLL;  OLL; O\y.x, -
6w’yi;X1: aAyi;Xi awyz,Xy
1
= (/\7:% - 1) : ewyi;xi =Y — )\y,,XL
Yi; X

Equation (7) is the gradient function we used to optimize a
discriminative Poisson model with additive functional gradient
boosting which we denote as DPM-AGB.

Hadiji et al. [10] defined the functional parameter as
Yy x; = Ay;;x,; and adapted a self-adaptive step size 7 into the
additive functional gradient update function ¢ = 1;_1+n-Ay,
where 7 is equivalent to the functional parameter from previ-
ous iteration (i.e. 7 = ¥;_1), and further proved that this new
update formula is equivalent to a multiplicative update step
with formula:

W (yis X;) = ' (yi3 X;) - Bx, y, [ i

— . 8
)\i(yi§Xi):| ®

We also evaluated the performance of the discriminative
Poisson model with their multiplicative gradient boosting
approach, which is denoted as DPM-MGB in the following
sections. The algorithm for DPM-MGB is as shown in Fig-
ure 1 and we omit the algorithm of DPM-AGB since it is
only different from DPM-MGB in the Function GenDPMEgs
where it generates the examples with Equation (7) instead
of Equation (8) and updates the model with additive step
F,, :=F,,_1 + 4A,, in Function DPM-AGB.

Fig. 1.
1: function DPM-MGB(Data)
2: for 1 <m < M do

: > Iterate through M gradient steps

Multiplicative Gradient Boosting for Discriminative Poisson Models

3

4 S :=GENDPMEGS(Data; Fy,—1)

5: > Generate examples
6: A, :=FITREGRESSTREE(S)

7 > Regression Tree learner
8 F,, = > Update model
9 end for

10: end function

m—1"° Am

11: function GENDPMEGS(Data, I)

122 S:=10

13: for 1 <i< N do > Iterate over all examples
14: A(yl,XZ) = W

15: S:=SU[(yi), Ayi;;%:))]

16: end for

17: return S > Return regression examples

18: end function

19: function FITREGRESSIONTREE(S)
20: Tree := createTree(P(X))

21: Beam := {root(Tree)}

22: while numLeaves(Tree) < L do

23: Node := popBack(Beam)

24: > Node w/ worst score
25: C := createChildren(Node)

26: > Create children
27: BN := popFront(Sort(C, S))

28: > Node w/ best score
29: addNode(Tree, Node, BN)

30: > Replace Node with BN
31: insert(Beam, BN.left, BN.left.score)

32: insert(Beam, BN.right, BN.right.score)

33: end while

34: return Tree
35: end function

IV. PREDICTING ANGIOPLASTY FROM REAL EHR

As mentioned earlier, we evaluated the distribution as-
sumption on a specific task - that of predicting treatments
of coronary artery disease. We used the electronic health



record extracted from Regenstrief Institute. We extracted data
from 5991 patients for a total of 4928799 health records
spanning from 1973 to 2015. We defined the target variable as
Angioplasty since it is a strong indicator for coronary artery
disease and assigned its value with the number of Angioplasty
through the trajectory of the patient’s medical record.

We considered medical measurements, procedures, medi-
cations as well as certain health behaviors before the first
Angioplasty as the predicting features (parents) of the target
variable Angioplasty. Table 1 shows the features and their
value types. As can be seen, there are two types of variables
- Boolean and numeric variables. Given that, for a certain
medical test, there could be multiple measurements before
the first Angioplasty procedure, the obvious question is which
measurement should we choose?

TABLE I
DOMAIN DESCRIPTION

Attribute Name Value Type
Procedures for EKG Boolean
Beta-Blocker Medications Boolean
Lipid Lowering Medication Boolean
Tricyclic Anti-Depressant Boolean
Calcium Channel Blocker Medication Boolean
DM Medication Boolean
HTN Medication Boolean
Post Acute Coronary Syndrome Boolean
Presence of Atrial Fib Boolean
History of Alcoholism Boolean
Smoke Status Boolean
Diastolic Blood Pressure Numeric
Systolic Blood Pressure Numeric
High-Density Lipoproteins (HDL) Numeric
Low-Density Lipoprotein (LDL) Numeric
AI1C test Numeric
Triglyceride Numeric
Body Mass Index Numeric

To answer this, consider Figure 2 which shows a sample
EHR trajectory of one patient with all records that are related
to him/her from the EHR. Each node along the time-line repre-
sents a medical event happened at that time point, e.g. having
a Procedures for EKG at 3/16/1995, taking HTN Medication
at 6/19/2001 or being tested for A1C at 10/31/2009. The
red nodes indicate the occurrences of Angioplasty. We use
different colors (orange and purple) to indicate that there are
two kinds of value types of the features, boolean and numeric.

As mentioned earlier, the time point when the first
Angioplasty procedure was performed is used to determine
the end time point of the segment over which the other
sequential events are extracted and aggregated. For the boolean
valued variables (usually the usage of certain medications or
procedures), we employed two different aggregation functions:
1). Indicator which is 1 if a certain event happens at least
once within the segment (i.e. before the first Angioplasty) and
0, otherwise; ii). Count which is the number of occurrences
for that event along the chosen segment of the patient’s EHR

trajectory.

For the case of numeric variables, we considered three
different ways for aggregating the multiple observations before
the first Angioplasty - i). Min which is the min value of
all the recorded values through the segment for a certain
medical measurement; ii). Max which is the max value of all
the measured values within the segment; iii). Mean which is
the mean value of those values. We also considered the final
measurement before the first Angioplasty as the representative
measure of the observations till that time point and denoted
it as Latest in our results. Finally, if a patient never had
Angioplasty, the target variable has the value of 0 and the
values of other variables are calculated by aggregating their
corresponding values over the entire trajectory instead of a
segment.

As mentioned earlier, we considered both Poisson and
Multinomial distributions with gradient boosting as the learn-
ing algorithm. Inside the gradient boosting, we considered two
types of base learners for Multinomials - Trees and Neural
networks [17] denoted as REPTree-B and NN-B respectively
in our results. For the Poisson assumption, we considered
two different update manners - multiplicative boosting [10]
(denoted as DPM-MGB) and additive boosting(denoted as
DPM-AGB).

We aim to answer the following questions explicitly:

e QI: Which of the two exponential family distributions

faithfully models the number of Angioplasty procedures?

e Q2: Does the choice of base learner or the update type

impact the modeling ability of the learned distributions?
¢ Q3: Does the choice of aggregation function matter when
predicting the number of procedures?

To evaluate these questions, we calculated the Mean Square

Error (MSE)

MSE — Y= plyi = i Xz‘)]2’
N

where ); is the true value of the target variable of the i
patient and NN is the number of patients. We also calculated
the mean Log-likelihood (LL) for DPMs, since the other
classifiers often predict the probability for Angioplasty being
high values as 0, hence the LL score cannot be reported for
them. We performed 5-fold cross-validation using the data
from 5991 patients and aggregated their results.

The first observation on Table II is that the Poisson model
with multiplicative updates tends to have lower MSE than their
multinomial counterparts. Its superior performance is statisti-
cally significant at the 3% significance level except for the case
of Indicator Mean when the p-value equals 0.1. DPM-AGB has
slightly higher MSE than multinomial boosting with regression
trees (RepTree-B). However, the differences between their
performance are NOT statistically significant when applying
the aggregators: Count Min (p-value = 0.588), Indicator
Min (p-value = 0.088) and Latest (p-value = 0.077). We
hypothesize that this is due to the sensitiveness of the step-
size parameter of the gradient steps in additive Poisson models.
The multiplicative models appear more robust to the step size
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Sample Trajectory of One EHR. The red circles indicate the events of Angioplasty; purple circles indicate the events of medical procedures with

binary values; orange circles indicate the events of medical measurements with continuous values. Events before the first Angioplasty would be aggregated

with certain aggregators according to their value types.

TABLE I
MSE OF PREDICTIONS FROM BOOSTING DIFFERENT CLASSIFIERS

Numeric | Boolean | REPTree-B | NN-B | DPM-AGB | DPM-MGB

Min C(_)unt 0.071 0.705 0.072 0.066
Indicator 0.064 0.819 0.067 0.058

Max Cgunt 0.066 0.614 0.069 0.063
Indicator 0.063 0.994 0.066 0.059

Mean Cgunt 0.064 0.255 0.068 0.061
Indicator 0.063 0.513 0.068 0.061

Latest Latest 0.065 0.438 0.068 0.061

(an observation made by Hadiji et al. [10]). So we answer Q1
cautiously in that Poisson models appear more suited for this
task if they are robust.

With respect to the base learners employed, it appears that
the neural networks do not perform as well as trees when
boosted - possibly due to overfitting. The trees serve as better
weak learners for the boosted model. For the gradient updates,
the multiplicative models appear to exhibit better performance
than additive models which are sensitive to their step-sizes.
Thus Q2 can be answered in favor of trees and multiplicative
updates.

Finally, for the comparison of different aggregators, we
considered the model with the best performance (i.e. DPM-
MGB). The differences between the performances of Indicator
and Count are NOT statistically significant at 3% significance
level, which indicates that the Indicator function is as useful as
Count for boolean variables (in that knowing whether an event
happened appears to be as informative as the number of times
the event happened). Same results are observed with numeric
variables as well. Thus answering Q3, there does not seem to
be too much difference which is statistically significant in the
choice of aggregation functions .

It is intriguing to check if different aggregators can result
in vastly different models. To this effect, we analyze the
first tree learned by each Poisson model. The first tree is a
good indicator of the most important set of features that are
employed in the prediction task. As can be seen clearly in
Figure 3, all the settings use the same feature in the root, which
is to check if the patient had post acute coronary syndrome.
Alcohol consumption appears on the left subtree in all the
aggregators and the Triglyceride appears on the right. It is
also instructive to note that the regression values at the leaves
are similar as well. This demonstrates that the aggregators do
not necessarily influence the final learned model.

In summary, our results are encouraging in that extensive
feature engineering is not necessary when employing a rea-
sonable probability distribution for modeling Angioplasties.

Our results show that modeling the count distributions using
Poisson regression model allows us to faithfully capture the
number of procedures (as the high log-likelihood numbers
show in Table III).

TABLE III
LOG-LIKELIHOOD OF RESULTS FROM DPM-MGB
LL Min Max Mean Latest
Count -0.486 -0.37 -0.384 ~
Indicator | -0.412 | -0.399 | -0.414 ~
Latest ~ ~ ~ -0.409

V. CONCLUSION

We considered a real application of graphical models -
that of predicting the number of Angioplasties on a patient
given historical data about the patient. We employed two
different types of assumptions—Poisson and multinomials—
for modeling this task. It is encouraging that going beyond
multinomials and respectively Gaussian (as an approximation)
for discrete random variables as observed recently in the
literature yields interesting insights to the underlying data. We
demonstrated this with a challenging real-world high-impact
task. Our results showed that Poisson models are reasonable in
modeling count data and appear to be better than multinomials
when used with a multiplicative boosting approach. Our results
also showed that good modeling assumptions can reduce
the need for feature engineering. We intend to evaluate this
algorithm on a larger EHR with over 50,000 patients. In
addition, we aim to learn a full dependency network that will
model several procedures simultaneously (i.e., joint learning).
Finally, extending this work to move beyond EHRs and include
other data sources such as social network, behavioral data
and possibly genetic and imaging data remains interesting
directions for future research.
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Fig. 3. Sample Learned Poisson Regression Tree for each of the aggregator.
(a) is the Count-Mean, (b) is the Indicator-Mean and (c) is the Latest. It is
worth noting that in all the three cases, the top levels appear to be very similar

demonstrating that the learned mode is indeed robust for all settings.
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