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Abstract—We consider the problem of predicting three proce-
dures, viz, EKG, Angioplasty and Valve Replacement procedures
jointly from Electronic Health Records (EHR) and develop a
discriminative boosted Bayesian network algorithm. Differences
between our proposed approach and standard Bayes Net struc-
ture learners are (1) we do not assume that the number of
features (observations) are uniform across training examples and
(2) our method explicitly handles the precision-recall tradeoff.
Our empirical evaluations on a real EHR data demonstrates
the superiority of this proposed approach to learning these
procedures individually.

I. INTRODUCTION

Coronary heart disease (CHD) is a major cause of death
worldwide. In the U.S. CHD is responsible for approximately
1 in every 6 deaths with a coronary event occurring every
25 seconds and about 1 death every minute based on data
current to 2007. Effectively predicting whether a particular
cardiovascular procedure would be performed on a patient
when she/he is admitted to the hospital can help in several
tasks including resource allocation, treatment planning and po-
tentially provide the physician with valuable resources needed
for making informed decisions. We consider the problem of
modeling multiple cardiovascular procedures jointly. Specif-
ically, we consider three of the most common procedures:
electrocardiogram (EKG), angioplasty and valve replacement
procedures. For example, consider a patient who enters a
hospital. Our aim is to build a system that can predict if these
procedures are going to be performed on the patient based
on his/her clinical measurements along with behavioral data
till the admission. Our hypothesis, that we verify empirically,
is that joint modeling of these procedures is more effective
than modeling each of them separately. Yet another important
advantage of predicting these procedures is that it will enable
the prediction of future medical costs for a patient and the
hospital leading to a better allocation of monetary and hospital
resources towards the patient treatment.

In the fields of artificial intelligence and machine learning,
joint modeling of events is typically performed using the ma-
chinery of probabilistic models, specifically Bayes Networks
(BN) [4]. A typical BN consists of two components - a
graphical structure that captures the qualitative dependencies
between variables/elements in the domain and conditional dis-
tributions (or prior distributions) that capture the quantitative
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dependencies among these elements. The structure learning
task of a BN involves learning the parameters in each iteration
which could potentially involve probabilistic inference (in the
case of hidden data). Given that inference is NP-hard, the
problem of structure learning is computationally intensive.
Consequently, several different assumptions are made in many
learning problems - some methods assume that the order of
the variables is known and fixed thus avoiding the complex
step of acyclicity checking. The more recent work [6] pro-
posed a decomposable structure learning that approximates
the conditional likelihood by factoring it. Inspired by this, we
propose a discriminative structure learning algorithm where
the loglikelihood is factored by the individual conditional
likelihood of the target variables. Specifically, we assume the
presence of two types of variables - observed variables/features
(in our case, clinical measurements and the behavioral data)
and target/modeling variables (in our case, the cardiovascular
procedures). Given these separate set of variables, we proceed
to learn the conditional distributions of the target variables.
To avoid cyclic dependencies in the model, we assume the
presence of an ordering among the target variables. This is
not a critical assumption as typically, the number of target
variables is small enough to search through the space of
all possible orderings efficiently. For learning each condi-
tional distribution, we employ the recently successful gradient-
boosting methods. The advantage of these methods is that
they can simultaneously learn the qualitative and quantitative
dependencies in the conditional distribution. Finally, given that
our data is highly imbalanced, i.e., the number of patients
on whom a certain procedure is performed is smaller than
the number of patients who did not have that procedure, we
employ a cost-based loglikelihood function that allows us to
balance the precision vs. recall (sensitivity vs. specificity)
trade-off in a principled manner.

II. BACKGROUND
A. Discriminative Bayesian Network Learning

Bayesian network (BN) is a probabilistic graphical model
which uses nodes to represent random variables, edges for
conditional dependencies and conditional probability distri-
butions for the strength of stochastic correlations. There are
two different schemes to approach the structure learning of



BNs: generative and discriminative methods. Generative BN
learning models the joint probability distributions of the input
features and target variable through maximizing the joint
likelihood. Discriminative BN Learning directly optimizes the
posterior conditional probability of the target variable given
the optimal parent set which is captured during the learning
process. Discriminative learning approaches are more simple
and accurate on predicting compared with generative learning
approaches which need to estimate the joint distribution. In
medicine, the most common task is to predict certain medical
events (diagnosis of diseases, the performance of treatments,
etc.) by considering all other information from the patients’
electronic health records, such as the lab measurements, de-
mographical attributes, genomic factors, etc. Hence, it is not
surprising that discriminative BN learning gets more and more
attention in bioinformatics and medical fields [2].

B. Learning DBNs with Functional Gradient Boosting

Functional Gradient Boosting (FGB) is proposed by [9]
where gradients are computed over a functional representation
of the target distribution. FGB represents the conditional
probability distribution of the target variable as a sigmoid over
a (potentially non-parametric) function .

_expip(x; parents(x)))
P(z|Parents(z)) = 1+ exp v (x; parents(z)))

where Parents(x) indicates the parent set of the target
variable x. It then calculates the gradients for each example
of the target variable by computing the functional gradient
of the pseudo-loglikelihood objective function. The gradient
(A(xz;)) for an example z; is given by I(x; = true) — P(z; =
true|parents(x;)) where I is the indicator function which
returns 1 for positive and O for negative examples. These
gradients correspond to the difference between the true label
and predicted probability of an example. Then, a regression
tree is learned to fit this regression dataset, which is then added
to the model. The sum of the regression values returned by the
sequence of trees after m iterations corresponds to the sum of
m gradient steps.

III. JOINT LEARNING OF CVD PROCEDURES

A standard methodology for learning a distribution over
multiple events/targets is the use of Bayes Networks [4].
Typically learning a Bayes Net consists of searching for
valid structures and scoring them (specifically for score based
methods). To score a network, one has to first estimate the
parameters of the updated network and then compute the score.
Most scores such as BIC, AIC, BDe etc. consist of two parts
- the likelihood of the data (the fit of the model) and a penalty
term for model complexity (regularization). Our approach to
learning Bayes Nets stems from various observations on this
methodology: first, in current Bayes Net learning methods,
the search and score are performed sequentially and repeat-
edly. Our method is capable of simultaneously learning the
structure and parameters of the network (i.e., parents of the
current target node) since we consider discriminative learning

of these models. Second, the use of FGB (specifically, the
number of trees) allows us to not consider the penalty term
as regularization is taken care of automatically. Third, each
conditional distribution in a standard Bayesian network can
be potentially represented as a tree to model context-specific
independence. Our proposed work can be seen as replacing
each single large tree of a conditional distribution with a
set of small trees learned in a sequentially boosted manner.
Finally, the acyclicity condition is realized implicitly in our
discriminative learning method since we assume an order over
the target variables as provided by the domain expert. Even in
the cases where this order is not provided, checking acyclicity
is easier due to a small number of target variables while in
general, this is exponential in the size of the feature set. In our
experimental setup, the algorithm performs a greedy search
over the space of structures i.e., it picks the structure with
the maximum likelihood score to obtain the best order as
EKG, Angioplasty and ValveReplacement. Note that the
complexity penalty associated with typical Bayes Net structure
learning methods can be ignored as the regularization comes
from the boosted trees (depth and number). We use F to denote
the input features such as blood pressure, cholesterol level,
triglycerides, smoking status etc. and use 7; to indicating
the targets (in our case, cardiovascular procedures - FKG,
Angioplasty and ValveReplacement) whose conditional
probability distributions are being estimated. According to
the chain rule of Bayes Networks, the maximum likelihood
estimation (MLE) task of the joint learning can be reduced to
1.

P(T,F) = P(T|F) - LL(F) (1)
XX P(T‘F,T) = HiP(Ti|T1;Z‘_1, F)

where T} is the it" target and the target variables 73.;_1 is
the first ¢ — 1 target variables according to the order. Given this
justification, now, the goal is to then estimate each conditional
distribution P(T;|T1,,_1,F) separately.

Algorithm 1 Learn DB?N
1: Input: (T, F,O)
> T: Set of Targets; F: Set of Observed Features; O: Order
of elements in T.
2: Output: BN(N,E, 7) > N: Set of Nodes, E: Set of
Edges, 7: Set of multiple trees
3: for i=1 to |T| do
5: 7;=SFGBOOST(T;, (F, T(1.i_1)))
P(Ti|F, T(1:-1y)
6: FE;=GetFeatures(;)
7: end for
8: return (N, E, 7)

> The current node
> 7; models

For estimating these distributions, we rely on the machinery
of functional-gradient boosting. Specifically, we employ the

I'We use bold variables to denote sets. For instance, F' denotes the set of
features.



Algorithm 2 SFGBoost :
Boosting
1: Input: (T3, F, T (1:5-1))
2: W = Initial function > i index of the current target
3: for 1=1 to U do > Iterate through U gradient steps
4 Tr := GenExzamples(i; Data; ¥i_;) > Generate
example
5: Al = FitRelRegressTree(Tr,F, T(1:-1))
trees to the functional gradient
Ui=Wi | +A]
7: end for
8: return ¥

Soft Margin Functional Gradient

> Fit

> Updating the model

work of Yang et al. [1] on cost-sensitive FGB. The key idea
in this work is to include a cost function that explicitly trades
off between false positives and false negatives. For ease of
notation, let us consider the current target as y and the set
of all the influencing variables (the other targets according to
the order and the observed features) as x. ¢(y;,y) = aI(y; =
1Ay = 0) + BI(y; = 0Ay = 1), where i is the current example
(patient), I(y; = 1Ay = 0) is 1 for false negatives and I(y; =
0Ay = 1) is 1 for false positives. Intuitively, c(y;,y) = «
when a positive example (say EKG =1) is misclassified, while
c(yi,y) = B when a negative example is misclassified. This
leads to a new modified loglikelihood (MLL) function that is
now optimized.

exp (w(xi; Zh))
1+ exp (¢ (xi9/) + c(yi ')
where ¢ is the current example. Recall from the background
section that when using the gradient boosting the gradients are
computed for each example separately. Hence, we presented
the MLL for each example and now, the gradient of this MLL
w.r.t ¥(y; = 1;%;) can be shown as:

Olog MLL
I(y; = 15%;)

MLL = Z log )

Py = 13x;)eclvev=)

>y [P(yi; x;)eclivi)]
3)

The gradients of the objective function can be rewritten
compactly as:

A=1(g;=1) — AP(y; = 1;x;)
ec(yiryzl) (4)
Xy [Py xi) ecvis)]

As a — oo, which amounts to putting a large positive cost
on the false negatives, A — 0 and the gradients ignore
the predicted probability as the gradient is pushed closer to
1 (A — 1), indicating a harsher penalty on misclassified
positive examples. On the other hand, when 3 — —oo, the
gradients are pushed closer to 0 (A — 0), indicating more
tolerance on misclassified negatives. By setting the parameters
a > 0 and B < 0, the different costs of false positive
and false negative examples can be incorporated into the
learning process. Empirically, we find that any choice of

=1I(y; = Lix;) —

A\ =
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Fig. 1. An example of data extraction. As shown clearly, the data
is right censored after the first procedure (shown as 77). Hence, the
goal is to predict the different procedures after observing the risk
factors before the first procedure.

a € [0.5,2] and 8 € [—2,—10] are reasonable choices for
efficient learning thus avoiding fine tuning of parameters [1].
Given this gradient, we now proceed to our algorithm. Algo-
rithm 1 presents our Discriminative Boosted Bayesian Network
(DB?N) learner. In the outer loop, we consider each target
variable in turn and make that variable the current node (1V;)
in the Bayes Net. For the current node, we call the soft
margin based functional gradient boosting (Algorithm 2) that
returns the set of regression trees that model the conditional
distribution of this node given its parents. The set of all the
variables appearing in this set of regression trees form the
parents of the current node (E;). The process is repeated by
going through the order of variables. The final set of nodes
with their corresponding edges and the set of trees (for each
conditional distribution) are returned.

IV. EXPERIMENTS

We evaluate the problem of jointly modeling these cardio-
vascular procedures: EKG, Angioplasty and Valve Replace-
ment, using our DB2N learning algorithm. We aim to answer
the following questions explicitly:

Q1: How does joint modeling of the procedures perform
compared to individual learning?

How does the order of the procedures affect the perfor-
mance of DB2N?

Q3: Does DB2N model the learning task effectively?

We evaluated DB?N on data extracted from Electronic Health
Record from Regenstrief Institute. This dataset has records
of 5991 patients, along with their clinical history and some
behavioral data, collected between 1973-2015. Our target
procedures in the data are EKG, Angioplasty and Valve
Replacement. We consider several standard risk factors for
cardiovascular diseases like HDL levels, smoke status etc.

Data Extraction: When extracting the data, we perform
right censoring after the first procedure was performed on the
data. This is shown in Figure 1. Since our goal is to predict
the procedures jointly after the first procedure is performed,
we use the data (risk factors) prior to the first procedure. Note
that not all the subjects have all the procedures performed.
Hence, it is possible that a single subject could be a positive
example for one procedure and negative for another.

We compare our method DB2N with learning by boosting
dependency network where cyclic dependencies are allowed
(DNBoost). While effective in many domains, they are not
interpretable as they approximate the true joint distribution
and are possibly cyclic. Our second baseline is the one where

Q2:



TABLE 1
RESULTS OF RUNNING OUR ALGORITHM AND VARIOUS OTHER
CLASSIFIERS FOR PREDICTING ANGIOPLASTY. IT CAN BE
OBSERVED THAT DB2N EXHIBIT THE BEST PERFORMANCE
ACROSS ALL THE MEASURES

Angioplasty
Random LOngt{C IPBoost | DNBoost | DB2N
Forest Regression
AUC PR 0.824 0.751 0.868 0.905 0.887
Precision 0.815 0.690 0.840 0.898 0.951
Recall 0.798 0.663 0.766 0.805 0.909
F3 0.800 0.666 0.773 0.813 0.913
F5 0.799 0.664 0.769 0.808 0.911
TABLE I

RESULTS OF RUNNING OUR ALGORITHM AND VARIOUS OTHER
CLASSIFIERS FOR PREDICTING EKG. IT CAN BE OBSERVED THAT
DB?N EXHIBIT THE BEST PERFORMANCE ACROSS ALL THE

MEASURES
EKG
Random LOngqC IPBoost | DNBoost | DB2N
Forest Regression
AUC PR 0.833 0.847 0.861 0.916 0.919
Precision 0.783 0.7 0.791 0.857 0.952
Recall 0.756 0.76 0.750 0.833 1
F3 0.759 0.754 0.754 0.836 0.995
F5 0.757 0.758 0.751 0.834 0.998

each procedure is boosted individually without knowledge of
the other procedures (IPBoost for individual procedure boost).
We additionally compare our classifier with standard, widely
used supervised classification methods (Logistic Regression
and Random Forest) to predict each procedure individually.
Note that these classifiers (Logistic Regression and Random
Forest) require fixed length feature vector as their inputs. To
this effect, we aggregate each observation using mean function
(we explored max, latest etc as aggregators and found mean to
be the most informative). We perform 5-fold cross validation
and report the area under PR curve along with true positive
rate, precision with F3 and F5 scores. Accuracy and log-
likelihood are not the useful measures in imbalanced datasets.

The results are summarized in Tables I, II and III for each
procedure. As can be seen clearly, DB2N outperforms all the
baselines on almost all the performance measures across all the
procedures. This clearly answers Q1 and ()3 affirmatively. In
addition, it achieves very good performance for all metrics on

TABLE III
RESULTS OF RUNNING OUR ALGORITHM AND VARIOUS OTHER
CLASSIFIERS FOR PREDICTING VALVE REPLACEMENT. IT CAN BE
OBSERVED THAT D B2N EXHIBIT THE BEST PERFORMANCE
ACROSS ALL THE MEASURES

Valve Replacement
Random 1 Logistic | 1pp o | DNBoost | DB2N
Forest Regression

AUC PR 0.748 0.718 0.82 0.866 0.870
Precision 0.816 0.684 0.750 0.835 0.952
Recall 0.824 0.709 0.773 0.86 0.767
F3 0.823 0.706 0.771 0.857 0.782

F5 0.824 0.708 0.772 0.859 0.772

all the procedures. Finally, it is also clear that reasoning about
these procedures jointly is more useful than reasoning about
them individually. Hence, our method models the medical
knowledge of interrelated procedures faithfully. The results
in this table for DB?N employ the following order - EKG,
Angioplasty, valve replacement - as picked by our algorithm.
This answers Q2 in that ordering is important when learning
a Bayesian network.

V. CONCLUSION

We consider the problem of modeling multiple cardiovascu-
lar procedures using Bayes Networks. To this effect, we pro-
pose an efficient learning algorithm that avoids repeated search
and score as is typically done in standard learning methods.
Our method effectively learns the parameters and parents of
the targets in one step. Experiments on a real EHR demonstrate
the effectiveness of this approach in modeling cardiovascular
procedures. Extending this algorithm to temporal modeling is
an important future direction. We aim to also explore the use
of hybrid models in learning discriminative Bayes Networks
as our current approach assumes discrete random variables.
Finally, more rigorous evaluation of this approach on a larger
set of procedures remains an interesting direction.
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