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ABSTRACT

Most learning algorithms are optimized with generalization and
predictive performance as the goal. However, in most real-world
machine learning applications, obtaining features at test time can
incur a cost. For example, in clinical tasks, acquiring certain fea-
tures such as FMRI or certain lab tests for patients can be expensive,
while other features like patient demography or history are easily
obtained and do not have a cost involved. Motivated by this, we ad-
dress the problem of test-time elicitation of features. We formulate
the problem of cost-aware feature elicitation as an optimization
problem with trade-off between performance and feature acquisi-
tion cost. We assume that the cost of the features has already been
paid in obtaining the training data. We propose a Clustering based
Cost Aware Test-time Feature Elicitation (CATE) algorithm, which
can select the relevant feature set given the observed attributes of
the test instance. Our experiments on four real-world tasks demon-
strate the efficacy and effectiveness of our proposed approach in
both cost and performance.
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• Supervised learning → Budgeted learning; Feature selection;
• Applications→ Healthcare.
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1 INTRODUCTION

In supervised classification setting, every instance has a fixed fea-
ture vector and a discriminative function is learnt on such a fixed-
length feature vector and it’s corresponding class variable. However,
several practical problems such as healthcare, networks, recom-
mender systems, surveys [24, 25] etc. include an associated feature
acquisition cost. In such domains, there is a cost budget for specific
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feature subsets since acquiring all the features for all the instances
can become prohibitively expensive. Consequently, many cost sen-
sitive classifier models [3, 13, 29] have been proposed to incorporate
the cost of acquisition into the model objective during training and
prediction.

Figure 1: CATE intuition. The assumption is that certain features

like demographics are easily available, whereas features like Lab

tests, image features etc. are expensive and incurs cost. Blue shaded

regions refers to different elicitable features for different clusters.

Our problem is motivated by such a cost-aware setting where
the assumption is that prediction time features have an acquisition
cost and adheres to a strict budget. As an example, consider the
diagnosis of a patient. In such cases, demographic information (age,
gender etc.) are easily available at zero costs. Some specific lab
tests including imaging and genotyping on the other hand, can be
quite expensive. In such tasks, during learning it is essential that
the classifier considers such query-time costs. The intuition of this
work (see Figure 1) is that different patients, depending on their
history, ethnicity, age and gender, may require different tests for
reasonably accurate prediction. We build on the intuition that given
certain observed features like one’s demographic details, the most
important features for a patient depends on the important features
for similar patients. Consequently, we identify similar data points
in the observed feature space and determine the important feature
subsets of these similar instances by employing a greedy informa-
tion theoretic feature selector objective. Moreover, our approach
is applicable in test-time/deployment as it mirrors the real-world
deployment of ML methods.

We make a few key contributions: (1) We consider the problem of
query-time cost-aware learning and We develop a clustering-based
framework that identifies the closest set of examples in the training
set to determine the best feature sets to query at deployment time.
(2) We present our algorithm CATE that performs cost-aware test
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time feature elicitation. (3) Finally, we demonstrate empirically the
efficiency and effectiveness of our approach.

2 RELATEDWORK

Prior research on cost-sensitive feature selection and learning can
be categorized into the following four broad approaches.
Tree-based budgeted learning: Prediction time elicitation of fea-
tures under a cost budget has been widely studied using tree-based
models [8, 21, 22, 31–33] by adding a cost term to the objective
function in either decision trees or ensemble methods like gradient-
boosted trees. Broadly, these methods aim to build an adaptive and
complex decision boundary by considering trade-off between per-
formance and test-time feature acquisition cost. While in principle,
our motivations are similar, our work is not restricted to tree-based
models. Instead we find local feature subsets using an information
theoretic feature selector for different clusters of training instance
built in a lower dimensional space.
Adaptive classification and dynamic feature discovery: Our
work draws inspiration from Nan et al.’s work [20] where they learn
a high performance costly model and approximate the model’s per-
formance adaptively by building a low cost model using a gating
function which decides which model to use for specific training in-
stances. This adaptive switching between low and high cost model
takes care of the trade-off between cost and performance. Our
method is different from theirs as we do not maintain a high cost
model which is costly to build and difficult to decide. We refine
the parameters of a single low cost model by incorporating a cost
penalty in the feature selector and model objective. Our work is
also along the direction of Nan et al.’s work [23] where they select
varying feature subsets for test instance using neighbourhood in-
formation of the training data. While calculating the neighborhood
information from training data is similar to building clusters in
our approach, the training neighborhood for our method is on only
the observed zero cost feature space. In addition, we incorporate
the neighborhood information in the training time. Ma et al. [15]
take a different approach of dynamic discovery of features based
on generative modeling.
Feature elicitation using Reinforcement learning: Sequential
decision making has been used [6, 14, 27] to model the test time
feature elicitation by learning an optimal policy. Action in such
setting is whether to acquire a particular feature of a single instance
or all the instances and optimal policy refers to the order in which
these features are acquired. Our work aligns with the work of
Shim et al. [30] where they jointly train a classifier and RL agent
together. The key differences lie in the nature of the solution – RL
vs supervised joint learning.
Active Feature Acquisition: Our problem set-up is also inspired
by work along active feature acquisition [18, 19, 24, 28, 34] where
certain feature subsets are observed and rest are acquired at a
cost. These methods acquire new features during training time
and typically use active learning to seek informative instances at
every iteration, we elicit features for test instances. All the training
instances in our work are fully observed and the assumption is that
the feature acquisition cost has already been paid during training.
Our problem set up is similar to Kanani et al. [10] in that they

assume partial test instances, however their problem is that of
instance acquisition where the acquired feature subset is fixed.
Our contributions: Although the problem of prediction time fea-
ture elicitation has been explored in literature from various di-
rections and with various assumptions, we develop an intuitive
solution by formulating the problem in a two step optimization

framework.We incorporate acquisition cost in both the feature selec-
tor and model objectives to balance the performance and cost trade-off.
The problem set up is naturally applicable in real world health care
and other domains where the knowledge of the observed features
also needs to be accounted while selecting the elicitable features.
We formalize the problem as a joint optimization problem of select-
ing the best feature subset for similar data points and optimizing
the loss function using the important feature subsets.

3 CLUSTERING BASED FRAMEWORK FOR

TEST TIME FEATURE ELICITATION

Notations: An upper-case letter in bold represents a set (e.g. P)
and 𝑃𝑖 denotes the 𝑖𝑡ℎ element of P. E denotes the set of training
instances (𝑥1, 𝑥2 · · · , 𝑥𝑛) where 𝑥𝑖 ∈ R𝑑 is the feature vector of
each instance, Y denotes the set of labels for the training points.
The whole feature set is denoted by F which is partitioned into two
feature subsets; O and E. E is partitioned into two sets: EO which
denotes the set of instances with the feature set O and EE denotes
the set of instances with the feature set E. In general, ES where
S ⊆ F refers to set of instances restricted to S. A cluster 𝑖 is denoted
by 𝑐𝑖 . E𝑐𝑖 and Y𝑐𝑖 denote the set of instances and labels belonging
to a cluster 𝑐𝑖 . There is an associated cost vector M where M ∈ R𝑑

is the feature acquisition cost of F . The final training model is
denoted by G. A budget is denoted by 𝐵 and can either be a budget
on features or cost.

3.1 Problem setup

Given: A dataset with instances E = (𝑥1, · · · , 𝑥𝑛), labels Y =

(𝑦1, · · · , 𝑦𝑛), cost vectorM and a budget 𝐵.
Objective: Learn a discriminative model G that is aware of the
feature costs and can balance the trade-off between feature acquisi-
tion cost and model performance and make predictions on partially
observed test instances.
We make an additional assumption – there is a subset of features
which have 0 cost. These could be, for example, demographic fea-
tures (e.g. age, gender, etc) in a medical domain which are easily
available as compared to other features. In other words, we can par-
tition the feature set F = O ∪ E where O are the zero cost observed
features and E are the elicitable features which can be acquired at a
cost. We also assume that the training data is completely available
with all features (i.e. the cost for all the features has already been
paid while training). We will relax this assumption in future work.

Our goal is to use the observed features to find similar instances
in the training set (for examples, similar age group, gender, ethnic-
ity etc.) and identify the important feature subset based on these
instances. To this effect, we first cluster the training data points
based on observed features (e.g. age, gender, ethnicity). Next, for
each cluster, we identify the most important features under a cost
constraint. We then train the model by using the appropriate feature
set for the specific cluster – this is in contrast to general feature
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selection algorithms which select a fixed feature set for the entire
dataset. At prediction time, for every instance, since only the ob-
served feature set O is available, we seek an appropriate subset of
the elicitable features and make predictions based on the trained
model.

3.2 Proposed solution

As a first step, we cluster all the training instances based on only the
observed zero cost feature set O. The key intuition is that instances
with similar observable features will potentially have similar most
informative elicitable features. For example, in a clinical task, the
choice of one of blood test, CT-scan or MRI could depend on factors
such as age, gender, ethnicity and whether patients with similar
demographic features had requested these tests, an intuition that
we formalize here.

Our model consists of a parameterized feature selector module
𝐹𝑖 (S, 𝛼) which is a restriction of the global function 𝐹 (S, 𝛼) to the
𝑖𝑡ℎ cluster 𝑐𝑖 build using the feature set O. 𝐹𝑖 (S, 𝛼) outputs a sub-
set S of most important features for the discriminative task. The
feature selection model is based on an information theoretic frame-
work (see more details below) and is augmented with the feature
cost to account for the trade off between model performance and
acquisition cost at test-time. The feature subset S from the feature
selector module is used to update the parameters of the model. The
optimization framework for our proposed approach is shown in
Figure 2.
Information theoretic feature selector model: The feature se-
lector module selects the best subset of features for each cluster
of training data (build on observed feature set) based on an infor-
mation theoretic objective score. Since at test time, the elicitable
feature subset E (which will be needed by a feature selection algo-
rithm if we were to run it on the test instances) is not known, we
propose to use the closest set of instances in the training data to
the current instance, and find the elicitable feature subset from that.
Since we assume that the training data has already been elicited,
all the features are fully observed in the training data. We com-
pute the distance based on only the observed feature set O and
cluster the training data into m clusters 𝑐1, 𝑐2, · · · 𝑐𝑚 . Next, we use
the Minimum-Redundancy-Maximum Relevance (MRMR) feature
Selection paradigm [2, 26]. We denote parameters [𝛼1𝑐𝑖 , 𝛼

2
𝑐𝑖
, 𝛼3𝑐𝑖 , 𝛼

4
𝑐𝑖
]

as parameters of a particular cluster 𝑐𝑖 . Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be the
elicitable features with 𝑛 = |E |. The feature selection module is a
function of the parameters of the cluster to which a set of instances
belong and is defined as:

𝐹𝑖 (S, 𝛼𝑐𝑖 ) =
∑
𝑝∈S

𝛼1𝑐𝑖 𝐼 (𝑋𝑝 ;Y)︸             ︷︷             ︸
max. relevance

−
∑
𝑝∈S

∑
𝑗 ∈S

(
𝛼2𝑐𝑖 𝐼 (𝑋 𝑗 ;𝑋𝑝 ) − 𝛼3𝑐𝑖 𝐼 (𝑋𝑝 ;𝑋 𝑗 |Y)

)
︸                                               ︷︷                                               ︸

min. redundancy

−𝛼4𝑐𝑖
∑
𝑝∈S

𝑐 (𝑋𝑝 )︸          ︷︷          ︸
cost penalty

(1)

where 𝐼 (𝑋 ;𝑌 ) is the mutual information between the random vari-
ables𝑋 (the feature) and𝑌 (label). In the above equation, the feature
subset S is grown greedily using a greedy optimization strategy
maximizing the above objective function. In equation 1, 𝑋𝑝 denotes
a single feature from the elicitable set E that is considered for cur-
rent evaluation based on the subset S grown so far. The first term in
Equation 1 refers to the mutual information between each fea-
ture from the elicitable set E considered for evaluation and the class
variable Y. In a discriminative task, this value should be maximized.
The second term is the pairwise mutual information between
each feature to be evaluated (𝑋𝑝 ) and the features already added to
the feature subset S. This value needs to be minimized for selecting
informative features as correlated features give redundant infor-
mation about the target. The third term is called the conditional
redundancy [2] and this term needs to be maximized. The last
term adds the penalty for cost of every feature and ensures the
right trade-off between cost, relevance and redundancy. We do not
learn the parameters 𝛼𝑐𝑖 for each cluster, instead fix these parame-
ters to 1. We leave the learning of the feature selector module to
future work.

In the problem setup, since the zero cost feature subset is al-
ways present, we always consider the observed feature subset O in
addition to the most important feature subset as returned by the
feature selector objective. We also account for the knowledge of
the observed features while growing the informative feature subset
through greedy optimization. Specifically, while calculating the
pairwise mutual information between the features and the condi-
tional redundancy term (second and third term of equation 1), we
also evaluate the mutual information of the candidate features with
the observed features. Our method is robust to cases where the
0 cost features are not correlated with the target because in such
scenario, the feature selector model will identify features from the
elicitable set that are correlated with the target (max relevance).
Optimization Problem: The cost-aware feature selector
𝐹𝑖 (S, 𝛼) for a given set of instance E𝑐𝑖 belonging to a specific cluster
𝑐𝑖 solves the following optimization problem:

S𝑖𝛼 = argmaxS⊆E𝐹𝑖 (S, 𝛼𝑐𝑖 ) (2)

For a given set of instances (E𝑐𝑖 ,Y𝑐𝑖 ) belonging to cluster 𝑐𝑖 , we
denote 𝐿(E𝑐𝑖 ,Y𝑐𝑖 , S, 𝜃 ) as the loss function using a subset S𝑖𝛼 of the
features as obtained from the feature selector optimization problem.
The optimization problem for learning the parameters of a classifier
can be posed as:

min
𝜃

|𝐶 |∑
𝑖=1

𝐿(E𝑐𝑖 ,Y𝑐𝑖 , S𝑖𝛼 , 𝜃 ) + 𝜆1𝑐 (S𝑖𝛼 ) + 𝜆2 | |𝜃 | |2 (3)

where 𝜆1 and 𝜆2 are hyper-parameters and |𝐶 | refers to the total
number of clusters. In the above equation, 𝜃 is the parameter of the
model and can be updated by standard gradient based techniques.
This loss function takes into account the important feature subset
for each cluster S𝑖𝛼 and updates the parameter accordingly. The
classifier objective also consists of a cost term denoted by 𝑐 (S𝑖𝛼 ) to
account for the cost of the selected feature subset. For hard budget
on the elicited features, the cost component in the model objective
can be considered. In case of a cost budget, this component can be
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Figure 2: Optimization framework for CATE

ignored because the elicited feature subset adheres to a fixed cost
and hence, this term is constant.
Submodularity of the Optimization Problem: We now argue
that the optimization problem (equation (2)) is submodular under
certain restricted settings. Since, we set 𝛼𝑐𝑖 = 1, the following is a
sufficient condition for submodularity:

Lemma 3.1. The objective function (equation (1)) is submodular if
for all features 𝑖, 𝑗 ∈ E, 𝐼 (𝑋𝑖 ;𝑋 𝑗 ) ≥ 𝐼 (𝑋𝑖 ;𝑋 𝑗 |𝑌 ).

Note that the conditioning does not reduce the mutual informa-
tion, unlike entropy. Furthermore, the submodularity of this follows
from the fact that the negative pairwise similarity function is sub-
modular [9]. Unfortunately, it is not monotone. However, as shown
in [12], this function is approximately monotone and the greedy
algorithm described in the next sub-section has an approximation
guarantee.

3.3 Algorithm

We present the algorithm forCost Aware Test-time Feature Elic-

itation (CATE) in Algorithm 1. CATE takes as input set of training
examples E, labels of the example Y, zero cost feature set O, the
elicitable feature subset E, a cost vector M ∈ R𝑑 and a budget 𝐵.

The training instances E are clustered based on just the observed
feature set O using K-means clustering (Cluster). For every cluster
𝑐𝑖 , the training instances belonging to a specific cluster is assigned
to E𝑐𝑖 , their labels to Y𝑐𝑖 and is passed to the feature Selector mod-
ule (lines 5-8). The FeatureSelector module identifies the most
important feature subset S𝑐𝑖𝛼 corresponding to a cluster 𝑐𝑖 . Once all
the important feature subsets are identified for all the |𝐶 | clusters,
the model objective function is optimized as mentioned in Equa-
tion 3 for all the training instances using the important feature
subsets (line 10). All the remaining features are imputed by using
either 0 or any other imputation model before training the model.
The final training model G𝛼,𝜃 (EO ∪ S𝛼 ) is a single model which is
used to make predictions for a test-instance consisting of just the
observed feature subset O. When a test instance with observed
feature subset O is encountered, it is first assigned to the closest
cluster and the important elicitable feature subset of that cluster is
acquired at query time to make predictions.

The FeatureSelector module in Algorithm 2 takes set of in-
stances belonging to a cluster referred as I, their labels Y, feature
selector parameter 𝛼 , the feature subsets O and E, cost vector M
and a predefined budget 𝐵 as input and outputs the important fea-
ture subset for that cluster. A greedy optimization technique is
used to grow the feature subset F of every cluster based on the

feature selector objective function as defined in Equation 1. For
every feature in the elicitable set E, the feature selector score de-
fined in Equation 1 is evaluated (lines 10-11). It is to be noted here
that the objective function consists of two components: the mutual
information related component and the cost component. While
individual mutual information is always > 0, the total mutual infor-
mation score (𝑀𝐼_𝑠𝑐𝑜𝑟𝑒) is a combination of relevance, redundancy
and conditional redundancy and this joint score can be < 0. After
calculating the individual feature scores, the best feature is selected
and added to the best feature subset F (line 17). The best feature
is removed from the elicitable set E (line 18) and the algorithm
is repeated. Finally, once the entire budget 𝐵 is exhausted or the
mutual information score becomes negative (lines 6-8; 13-15), the
FeatureSelector module terminates and returns the subset F.

Algorithm 1 Cost Aware Test-time Feature Elicitation

1: function CATE(E,Y,O, E,M, 𝐵)
2: E = EO ∪ E ⊲ E consists of 0 cost features O and costly

features E
3: 𝐶 = Cluster(EO) ⊲ Clustering based on observed

features O
4: for 𝑖 = 1 to |𝐶 | do
5: E𝑐𝑖 ,Y𝑐𝑖 = GetClusterMember(E,𝐶, 𝑖)
6: ⊲ Get data points belonging to each cluster 𝑐𝑖
7: S𝑐𝑖𝛼 = FeatureSelector(E𝑐𝑖 , 𝑌𝑐𝑖 , 𝛼,O, E,M, 𝐵)
8: ⊲ Parameterized feature selector for each cluster
9: end for

10: Optimize 𝐽 (E,Y, S𝛼 , 𝜃,M)
11: ⊲ Optimize objective function in Equation 3
12: Update 𝜃

return G𝛼,𝜃 (EO ∪ S𝛼 ) ⊲ G is final training model
13: end function

4 EMPIRICAL EVALUATION

We performed experiments with 3 real-worldmedical data sets,
HELOC data set released as part of FICO explainable machine learn-
ing challenge and a standard diabetic retinopathy [1] data set from
UCI. The data collection in medical domains makes a compelling
case for CATE. While we use the medical data sets as motivation
we use HELOC data set to demonstrate the algorithm’s wide appli-
cability. Table 2 presents down the various features of the data sets
used in our experiments. We now briefly explain the real-world
data sets before presenting the results.
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(a) Rare disease (F1) (b) PPMI (F1) (c) ADNI (F1)

(d) FICO (Accuracy) (e) Retinopathy (Accuracy)

Figure 3: Comparison of CATE against various baselines and Adaptlin by Nan et al. [20] for various feature budgets. Uniform

feature cost is assumed for all the algorithms. F1-score is reported for the imbalanced data sets and Accuracy is reported for

the balanced data sets.

1. Parkinson’s disease: The Parkinson’s Progression Marker Ini-
tiative (PPMI) [17] is an observational study where the aim is
to identify Parkinson’s disease progression from various types
of features. The PPMI data set [5] consists of features related
to various motor functions and non-motor behavioral and psy-
chological tests. We consider certain motor assessment features
like rising from chair, gait, freezing of gait, posture and postural
stability as observed features and treat the other features as
elicitable features that have an associated cost.

2. Alzheimer’s disease: The Alzheimer’s Disease NeuroIntiative
(ADNI1) is a study that aims to test whether various clinical,
FMRI and biomarkers can be used to predict the early onset
of Alzheimer’s disease. In this data set, we consider the demo-
graphics of the patients such as age, gender etc as observed with
zero cost and the FMRI image features and cognitive scores as
unobserved and elicitable features.

3. Rare disease: This data set is created from survey question-
naires [16] and the task here is to predict whether a person
has a rare disease. The demographic features of subjects are ob-
served while other sensitive questions in the survey regarding
technology use, health and disease related meta information
are considered elicitable.

1www.loni.ucla.edu/ADNI

4. HELOC data set: The Home Equity Line of Credit (HELOC)
data set is an anonymized data set made by real home owners re-
leased as part of FICO explainable machine learning (xML) chal-
lenge found at community.fico.com/s/xml [7]. The prediction
task is to use information about customers to predict whether
they will repay their HELOC account within 2 years of purchase.
Trade related information about the customers such as month
since the oldest trade was opened, months since the most recent
trade has been opened and number of satisfactory trades are
considered as observed features and the remaining features are
considered as elicitable.

Evaluation Methodology: All the data sets were partitioned
randomly into a 80 : 20 train-test split. Hyper-parameters like
the number of clusters on the observed features were chosen by
performing 5 − 𝑓 𝑜𝑙𝑑 cross-validation on all the data sets and are re-
ported in Table 1. For the results reported in Table 1, we considered
a hard budget on the number of elicitable features. Our proposed
algorithm has the best performance when the number of elicitable
features is set to approximately half of the total number of features
and we picked the number of elicitable features through a validation
set. This is because CATE has a trade-off between the amount of
information obtained by selecting the important features versus the
number of features whose values are imputed. We use 𝐾 −𝑚𝑒𝑎𝑛𝑠
clustering as the underlying clustering algorithm and note that any

www.loni.ucla.edu/ADNI
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Data set # elicit feat # clusters Algorithm Accuracy Recall F1 AUC-ROC AUC-PR

Rare disease 34

OBS - 0.705 0.510 0.661 0.360
RANDOM - 0.582 ± 0.092 0.563± 0.070 0.705 ± 0.050 0.434 ± 0.056
KBEST - 0.47 0.444 0.618 0.338

9 CATE - 0.705 0.648 0.767 0.501

9 CATE-I - 0.705 0.648 0.767 0.501

PPMI 15

OBS - 0.756 0.682 0.739 0.562
RANDOM - 0.847 ± 0.023 0.807 ± 0.008 0.847 ± 0.006 0.710 ± 0.015
KBEST - 0.810 0.80 0.840 0.711

7 CATE - 0.819 0.801 0.841 0.710
7 CATE-I - 0.819 0.819 0.855 0.739

ADNI 35

OBS - 0.461 0.400 0.515 0.344
RANDOM - 0.526 ± 0.042 0.630 ± 0.047 0.726 ± 0.030 0.579 ± 0.059
KBEST - 0.576 0.714 0.778 0.683

3 CATE - 0.615 0.744 0.797 0.709

3 CATE-I - 0.615 0.665 0.739 0.557

HELOC 12

OBS 0.582 0.651 0.618 0.579 0.564
RANDOM 0.706 ± 0.011 0.723 ± 0.020 0.719 ± 0.013 0.705 ± 0.011 0.661 ± 0.009
KBEST 0.711 0.731 0.724 0.710 0.664

5 CATE 0.720 0.747 0.735 0.719 0.672

5 CATE-I 0.717 0.733 0.729 0.717 0.671

Retinopathy 9

OBS 0.536 0.691 0.613 0.526 0.545
RANDOM 0.667 ± 0.041 0.570 ± 0.023 0.647 ± 0.031 0.674 ± 0.043 0.657 ± 0.037
KBEST 0.705 0.577 0.676 0.714 0.696

3 CATE 0.705 0.577 0.676 0.714 0.696

3 CATE-I 0.701 0.577 0.672 0.709 0.690
Table 1: Comparison of CATE against other baselinemethods on all the data sets. # elicit feat refers to the number of elicitable

features used by the algorithms, # clusters refers to the number of clusters used for CATE and CATE-I

Algorithm 2 Feature Selector

1: function FeatureSelector(I,Y, 𝛼,O, E,M, 𝐵)
2: I = IO ∪ E ⊲ I consists of 0 cost features O and costly

features E of a cluster
3: F = {∅} ⊲ Stores best features
4: while 𝑇𝑟𝑢𝑒 do

5: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑐𝑜𝑟𝑒 = {∅}
6: if Budget 𝐵 is exhausted then

7: exit
8: end if

9: for 𝑖 = 1 to |E | do ⊲ Repeat for all elicitable features
10: 𝑠𝑐𝑜𝑟𝑒 = 𝑀𝐼_𝑠𝑐𝑜𝑟𝑒 − 𝑀𝑖 ⊲ Evaluate score of each

E𝑖 from Equation 1
11: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑐𝑜𝑟𝑒 = 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑐𝑜𝑟𝑒 ∪ 𝑠𝑐𝑜𝑟𝑒 (E𝑖 )
12: end for

13: if 𝑀𝐼_𝑠𝑐𝑜𝑟𝑒 < 0 then
14: exit
15: end if

16: 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑐𝑜𝑟𝑒) ⊲ Select feature with
highest score

17: F = F ∪ E 𝑗

18: E = E \ E 𝑗 ⊲ Remove selected feature from elicitable
set

19: end while

return F
20: end function

clustering algorithm can be employed. For all the reported results,
we use an underlying SVM [4] classifier with Radial basis kernel
(RBF) function except the HELOC data set where we use Logistic
Regression as the underlying model. Since many of our data sets

are highly imbalanced, we present metrics such as precision, recall,
F1, and AUC-ROC for our reported results for imbalanced data sets.
We present accuracy for balanced data sets. For the Feature selector
module, we built upon the existing implementation of Li et al. [11].
We consider two variants of CATE : (1) CATE in which we re-
place the missing and unimportant features of every cluster with
0 and then update the classifier parameters (2) CATE-I where we
replace the missing features by using a simple imputation model
learnt from only the acquired features of training instances. We use
mean to impute numeric features and mode to impute categorical
features.

Baselines:We consider 4 baselines for evaluating CATE:
(1) Using only the observed and zero cost features to update the

training model denoted as OBS.
(2) Using a random subset of fixed number of elicitable features

alongwith all the observed features to update the trainingmodel
denoted as RANDOM. For this baseline, the results are averaged
over 10 runs.

(3) Using the information theoretic feature selector score as defined
in Equation 1 to select the ’k’ best elicitable features on the entire
data without any cluster consideration along with the observed
features. The value of ’k’ was kept the same as that picked for
CATE. This method is denoted as KBEST.

(4) Using an existing approach called ADAPT-LIN by Nan et al. [23]
to get the feature budgets and their corresponding performance
metric denoted as ADAPT-LIN.

The work by Shim et al. [30] was not chosen as a baseline as they
differ significantly from the experimental setting of our approach.
They use deep neural networks and related set-encoding method
for imputation whereas we use SVM; also their setting considers all
the features at prediction time to be unobserved unlike ours where
we have a few observed features and thus not a fair comparison.
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Dataset # Pos # Neg # Observed # Elicitable
PPMI 554 919 5 31
ADNI 94 287 6 69

Rare Disease 87 232 6 63
HELOC 18545 17017 3 20

Retinopathy 611 540 2 17
Table 2: Details of the 5 data sets used for the experiments # Pos

refers to the number of positive examples and # Neg refers to the

number of negative examples. # Observed refers to the number of

observed features and # Elicitable refers to the maximum number

of features that can be acquired.

Results:We aim to answer the following questions:
Q1: How do CATE and CATE-I with hard budget on features

compare against the standard baselines?
Q2: How do the cost-sensitive version of CATE and CATE-I

compare against the cost-sensitive versions of KBEST and
RANDOM?

Q3: How do CATE and CATE-I compare against an existing
baseline approach ADAPT-LIN?

Q4: How does CATE behave in the absence of cluster-specific
features in the underlying data?

For the first set of experiments reported in Table 1, we consider
uniform cost on all the features and employ a hard budget con-
straint on the number of elicitable features. The results reported in
Table 1 suggests CATE significantly outperform the other standard
baselines OBS, RANDOM and KBEST in almost all the metrics for
Rare disease, ADNI and HELOC data set. CATE-I on the other hand
significantly outperforms the standard baselines for Rare disease
and PPMI data set. For ADNI, CATE-I does better than RANDOM
and KBEST on the clinically relevant recall metric. For the diabetic
retinopathy data set, CATE and CATE-I is at par with KBEST in
accuracy and performs significantly better than RANDOM. This
answers Q1 affirmatively.

In Figure 4, we compare the cost version of CATE and CATE-I
against KBEST and RANDOM baselines. Cost version takes into
account the cost of individual features and adds it as penalty in the
feature selector module. Hence, in this version of CATE, a cost bud-
get is used as opposed to hard budget on the number of elicitable
features. We generate the cost vector by sampling each feature cost
uniformly from (0,1). For PPMI and Rare disease, it can be observed
that cost sensitive version of CATE performs consistently better
than KBEST with increasing cost budget. In the PPMI data set, the
greedy optimization of the feature selector objective on the entire
data set for KBEST algorithm leads to elicitation of just a single
feature, beyond that the information gain was negative, hence the
performance of PPMI across various cost budget remains the same
for KBEST. CATE on the other hand, was able to select important
feature subsets for various clusters based on the observed features
related to gait and postures for the PPMI data set. For ADNI data
set, CATE performs better than KBEST mainly in the middle zone
of cost budget because this is where the maximum diversity in
features are captured by CATE. For the HELOC and Retinopathy
data set, the cost version of KBEST and CATE performs almost at
par with each other. CATE also performs significantly better than
RANDOM baseline for Rare disease, ADNI and Retinopathy data set

and at par with other data sets. The reason for CATE performing at
par with RANDOM in some data sets is because in CATE, there is
a trade-off between choosing the useful features versus the feature
acquisition cost. Hence, sometimes to balance this trade-off, CATE
has a drop in performance to account for low acquisition cost. This
helps in answering Q2.

We also compared CATE and CATE-I against Nan et al.’s ap-
proach of ADAPT-LIN where a costly model (SVM using RBF) is
learnt on all the features and a low cost linear model and gating
function is learnt to approximate the function learnt by the high cost
model. Since their method assumes uniform cost on the features,
we compared the version of CATE with uniform cost consideration
against their approach. For fair comparison, we compared against
the same number of features as reported by their method. Also,
for the imbalanced data sets, we changed the RBF SVM method in
the baseline to handle class-imbalance as in CATE and changed
the evaluation metric to F1 instead of accuracy. For the two bal-
anced data sets, we employed the same setting as their method. The
comparison of CATE and CATE-I against ADAP-LIN, KBEST and
RANDOM is shown in Figure 3. In the figures, the x-axis refers to
various feature budgets used by the various methods. In 3 out of the
5 data sets, we can see that CATE and CATE-I performs better than
ADAPT-LIN across all the feature budgets reported by ADAPT-LIN.
Another observation is that for the HELOC data set, RANDOM,
KBEST and CATE variants have the same performance because the
feature budget is equal to all the features in the data set, hence the
methods all perform similarly. This will answer Q3.

Finally, to answer Q4, CATE works in cases where there are
cluster-specific features present in the data. In the cases where the
data set has important global features, CATE reduces to one of the
baselines KBEST and performs similarly to KBEST. This hypothesis
can be validated for the diabetic retinopathy data set where KBEST
and CATE have similar performance as can be seen in Table 1 and
the cost versions of CATE for retinopathy in Figure 4.

5 CONCLUSION

We pose the prediction time feature elicitation problem as an opti-
mization problem by employing a cluster-specific feature selector to
choose the best feature subset and demonstrate the effectiveness of
our approach in real data sets. We next plan to learn the parameters
of the feature selector module by jointly optimizing the feature
selector and model parameters. Other interesting avenues include
extending our framework to an active setting, where, as we obtain
new subsets of features for test instances, one could update the
model parameters and clustering information. Another direction
would be to employ richer feature selection functions and inspired
by ideas from submodular function literature to theoretically ana-
lyze our algorithms.
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(a) Rare disease (Recall) (b) Rare disease (F1) (c) Rare disease (Precision)

(d) PPMI (Recall) (e) PPMI (F1) (f) PPMI (Precision)

(g) ADNI (Recall) (h) ADNI (F1) (i) ADNI (Precision)

(j) FICO (Accuracy) (k) Retinopathy (Accuracy)

Figure 4: Comparison of various performance metric between CATE ,CATE-I and the baselines. Recall,F1 and AUC-PR is

reported for imbalanced data sets, Accuracy for balanced data sets. The x-axis refers to various cost budgets considered which

lead to acquisition of different number of features for different budgets.
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