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ABSTRACT2

We consider the problem of learning structured causal models from observational data. In3
this work, we use causal Bayesian networks to represent causal relationships among model4
variables. To this effect, we explore the use of two types of independencies – context-specific5
independence (CSI) and mutual independence (MI). We use CSI to identify the candidate set of6
causal relationships and then use MI to quantify their strengths and construct a causal model. We7
validate the learned models on benchmark networks and demonstrate the effectiveness when8
compared to some of the state-of-the-art Causal Bayesian Network Learning algorithms from9
observational Data.10
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1 INTRODUCTION
Given the recent success of machine learning, specifically deep learning, in several applications (Goodfellow12
et al. (2016)), there is an increased interest in learning more explainable models including causal models.13

Many researchers have attempted to develop methods to infer causality from observational data over14
for several years (Pearl (2000, 1988b); Neapolitan et al. (2004)). While there have been some notable15
contributions in the field demonstrating the plausibility of learning causality from non-experimental data16
(Pearl (2000); Granger (1969); Sims (1972)), learning structural causal models from observational data is17
still a challenge (Guo et al. (2019)). Recent advances in the field of discovering causality has looked at18
learning Causal Bayesian Network (CBN). In this framework, causations among variables are represented19
with a Directed Acyclic Graph (DAG) (Pearl (2000)). The problem of learning a DAG from data is not20
computationally realistic as the number of possible DAGs grows exponentially with the number of nodes.21
This computational complexity has prevented the adaptation and application of causal discovery approaches22
to high dimensional datasets, with a few examples.23

In this work, we consider the problem of full model learning of causal models from observational data.24
We are inspired by tasks in real-world where only limited knowledge could potentially be available and25
hence building a full causal model is not possible. Similarly, the data might be obtained before learning,26
making interventions particularly, hard. In such cases, learning a probabilistic causal model from data is27
preferred. However, this is a hard task with a larger number of variables. This is the problem we tackle in28
this paper – how can we scale causal learning to a moderate number of features?29

1



Ramanan et al. Learning Causal Models

To this effect, we build upon the success in using two sets of independencies for building causal models –30
that of mutual independencies (MI)(Janzing et al. (2015)) and context specific independence (CSI) (Tikka31
et al. (2019)). While MI can be used to quantify the strength of the causal relationships, CSI has been used32
for causal identifiability. We employ these in the context of learning from data. We aim to learn a causal33
model by first learning probabilistic dependencies that can identify CSI. We then adopt a heuristic measure34
to remove and re-orient the edges of the probabilistic graphical model. We employ MI and heuristics to35
guide the search. The net result as we show empirically is a causal model. This is particularly important as36
scaling causal learning to large problems without interventions or bias is a significantly challenging task.37

Specifically, we leverage the success of dependency networks (DN) (Heckerman et al. (2000); Neville and38
Jensen (2007); Natarajan et al. (2012)) for learning with large data sets. Recall that a DN is a probabilistic39
graphical model that approximates the joint distribution using a product of conditionals. Hence, compared40
to a Bayesian Network (BN) these are uninterpretable and more importantly, approximate. However, their41
key advantage is that since they are products of conditionals, the conditionals can be learned in parallel and42
can be scaled to very large data sets.43

To scale causal model learning, we first learn a DN. To perform this, we learn a single (probabilistic)44
tree for every variable, then we identify and remove cycles from this DN. We consider mutual information45
employed in causal models to score and remove the edges. In addition, we detect and remove cycles from46
the DN, if any. Contrary to popular intuition, we employ two levels of learning to uncover a causal model -47
first is on learning a DN using trees and the second is on learning a causal model employing heuristics48
measures. Our evaluations on the two synthetic and one real benchmark causal data sets demonstrate49
the utility of such an approach. While we present quantitative metrics, qualitatively, the edges that are50
learned in this model uncover interesting findings. In addition, we compare the proposed approach to51
three other state-of-the-art causal learning methods employed on just the non-experimental data. Our52
results demonstrate that we obtain most of the causal links on large problems in order-of-magnitude fewer53
operations than most causal approaches.54

We make a few crucial contributions - we present the first causal learning approach that leverages progress55
in probabilistic methods towards learning from data. We develop heuristics on breaking the cycles and56
orienting the edges based on the causal modeling research. We learn a causal model on two synthetic and57
one real benchmark causal data sets and compare with ground truth network to understand the robustness of58
our approach. We also demonstrate the efficacy and efficiency of the approach on standard benchmark data59
sets compared to other state-of-the-art constrained based methods in the literature. Our proposed approach60
opens the door for a domain expert to interactively guide the causal model learner to a better model thus61
allowing a hybrid method for causal models.62

The rest of the paper proceeds as follows: after reviewing the related work on BN, followed by63
the discussion of some notable work in constrained based methods for learning CBN, we provide the64
background on DN learning. Next, we present our algorithm and provide intuitions on its functionality.65
We discuss the motivation of this work, that of the three benchmark data sets which are used to learn66
the joint causal model over the factors. Then we present the empirical evaluations on the two synthetic67
benchmark causal data sets and one real data set by comparing our algorithm with other commonly used68
Causal learning approaches as well as the ground truth. Finally, we conclude by outlining potentially69
interesting future directions.70
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2 BACKGROUND AND RELATED WORK
We first introduce Bayesian networks and dependency networks and certain concepts which build the71
foundation for innovations in CBN learning.72

2.1 Bayesian Network73

A Bayesian network (BN) is a directed acyclic graph G = 〈V, E〉 whose nodes V represent random74
variables and edges E represent the conditional influences among the variables. A BN encodes factored75
joint representation as, P (V) =

∏
i P (Vi | Pa(Vi) ), where Pa(Vi) is the parent set of the variable Xi.76

It is well-known that full model learning of a BN is computationally intensive, as it involves repeated77
probabilistic inference inside parameter estimation which in turn is performed in each step of structure78
search (Chickering (1996)). Therefore, much of the research has focused on approximate, local search79
algorithms that are generally broadly classified as constraint-based and score-based.80

In constraint-based methods, we learn a BN which is consistent with conditional independencies inferred81
from data (Spirtes et al. (2000)). By contrast, score-based methods search through the space of structures,82
and find the structure with the highest score (Heckerman et al. (1995); Friedman et al. (1999)). Hybrid83
learning approaches combine the advantages of both approaches; for example, using constraint-based84
techniques to estimate the network skeleton, and using score-based techniques to identify the set of edge85
orientations that best fit the data (Tsamardinos et al. (2006)).86

Our work is inspired by and can be considered as extending constraint-based methods which have been87
discussed extensively in the context of causal structure discovery.88

2.2 Constraint-based algorithms89

Constraint-based methods for learning causal structure from just the observational data typically use tests90
for conditional independencies to identify the causal links that exist in the data.91

Following three assumptions are employed to connect the underlying causations that are not perceived92
directly to observable probabilistic dependencies:93

• The Causal Markov Assumption states that every variable in a causal DAG Gc is (probabilistically)94
independent of all other variables if all its parents are observed.95

• The Faithfulness Assumption states that a causal DAG Gc and probability distribution P are faithful96
to one another iff the only conditional independencies in P are those entailed by the Causal Markov97
Condition on Gc.98

• The Causal Sufficiency Assumption that there doesn’t exist a common unobserved cause of one or99
more nodes in the domain (no hidden cause).100

The Causal Markov Assumption produces a set of (conditional and unconditional) probabilistic101
independencies from a causal graph, and the Faithfulness Assumption ensures that all of the probabilistic102
independencies in the distribution are entailed by the causal markov condition. The above stated three103
assumptions together ensure that causal DAGGc meets the Minimality Condition. The minimality condition104
ensures that there exists no proper subgraph of the true causal DAG Gc that can satisfy the causal markov105
assumption as well as produce the same probability distribution (Zhang (2008)).106

Consequently, the constraint-based methods for causal discovery are both sound and complete given107
perfect (noise-free) data (Spirtes and Glymour (1991); Zhang (2008); Colombo and Maathuis (2014)).108
The well-known PC algorithm assumes no latent variables and learns a BN consistent with conditional109
independencies inferred from data (Spirtes et al. (1993); Margaritis and Thrun (2000)). PC and a related110
algorithm FCI (Spirtes et al. (2000)) take a global approach to causal discovery by learning a network to111
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model the joint distribution. The FCI algorithm in addition can model latent confounders. However, they112
require searching over exponential space of possible causal structures. This restricts their adaptation to113
high-dimensional data (Silander and Myllymaki (2012)). Consequently, there are extensions of FCI, RFCI114
(Colombo et al. (2012)) that improve the efficiency at the cost of model quality.115

PC algorithm is heavily variable order dependent, i.e. if the order of the variables changes during learning,116
the resultant causal Bayesian network could potentially change. Stable-PC (Colombo and Maathuis (2012))117
is a modified version of the PC algorithm that queries all the neighbors of each node while computing118
CI tests and yields order-independent skeletons. Modified PC is efficient enough to handle large sets of119
variables, at the cost of not being provably sound and complete (Coumans et al. (2017)). To overcome the120
inefficiency of computing CI test between all pairs of variables, algorithms to uncover only local causal121
relationships between a specific target node and its neighbours have been developed(Margaritis and Thrun122
(2000); Aliferis et al. (2003); Ramsey et al. (2017)). A well-known work in this line of research is Grow123
Shrinkage algorithm (GS)( Margaritis and Thrun (2000)). GS is based on the idea that the Markov blanket124
includes all the nodes that contain the information about the current node being tested. Although the PC125
algorithm and the GS algorithm have had a major impact in this area of research, GS is still exponential in126
the size of the Markov blanket.127

Following the success of GS, several methods, such as IAMB ( Tsamardinos et al. (2003)) and its variants128
(Yaramakala and Margaritis (2005)) have been developed for the induction of CBNs by identifying the129
neighborhood of each node. Unlike PC and FCI, a well-known algorithm called Greedy Equivalence130
Search (GES) (Meek (1995)) begins with an empty graph and adds and removes edges iteratively. The GES131
algorithm falls broadly under a score-and-search procedure, that searches over equivalence classes of DAG132
and scores them (Chickering (2002a,b)). Although GES works well with moderate number of nodes, the133
space of equivalence classes is exponential in the number of nodes (Gillispie and Perlman (2013)). The134
Greedy Fast Causal Inference (GFCI) combines the benefit of GES (to learn the network) and FCI (to prune135
unnecessary edges as well as orient the edges) (Ogarrio et al. (2016)). Meanwhile, there has also been more136
and more evidence demonstrating the possibility of discovering causal relationships by combining both137
experimental and observational data (Cooper and Yoo (2013); Hauser and Bühlmann (2015); Meinshausen138
et al. (2016)). Other notable direction involves learning from mixed data types (continuous and discrete139
variables) (Andrews et al. (2018); Tsagris et al. (2018)). In principle, our approach can be naturally adapted140
to handle mixed variable types, as long as an appropriate conditional independence test is employed.141
However, we note this as a future direction.142

Our approach can be seen as scaling such methods to large observational data by potentially identifying143
a cyclic dependency network that can then be transformed into a causal graph. As mentioned earlier, we144
move away from the data-driven independency tests and consider model-based independency tests which145
could allow us to scale to potentially large data sets. We hypothesise that learning such a dependency146
network is scalable thus reducing the complexity of causality search.147

2.3 Dependency Networks148

Dependency Networks (DN) (Heckerman et al. (2000)), another directed model is similar to a BN, except149
that the associated network structure need not be acyclic. That is to say, unlike a BN, a DN permits cycles.150
A DN encodes conditional independence constraints such that each node is independent of all other nodes,151
given its parents (Heckerman et al. (2000)). Therefore, they approximate the joint distribution over the152
variables as a product of conditionals thus allowing for cycles. These conditionals can be learned locally,153
resulting in significant efficiency gains over other exact models, i.e., P(V) =

∏
V ∈V P(V |Pa(V )), where154

Pa(V ) indicates the parent set of the target variable V . Since they are approximate (unlike standard Bayes155
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Nets (BNs)), Gibbs sampling is typically used to recover the joint distribution; this approach is, however,156
very slow even in reasonably-sized domains. In summary, learning DNs is scalable and efficient, especially157
for larger data sets, but BNs are preferable for inference, interpretation, discovery and analysis. Recall158
that our goal is to discover causal relationships between variables. In order to develop an approach for159
this motivating application, we propose an algorithm for learning a BN from DN, that can scale to a large160
number of variables.161

3 EXPLOITING CONTEXT-SPECIFIC INDEPENDENCIES FOR LEARNING
CAUSAL MODELS

Figure 1. Flow Chart of the proposed framework. Given data D with V variables, a dependency network
DN ≡ (V,E) is learnt on entire data. Learn a dependency network where each conditional is a decision
tree of small depth. Recollect that resultant DN may have bidirectional edges between nodes. All the
bidirected edges in the DN are converted to undirected edges (if any). For all variables with edges in
between them in DN , mutual independence scores between them are computed. We loop through all the
cycles in DN , such that the shortest cycles from the DN are first identified and the appropriate edges
are removed based on MI less than the threshold δ. Our framework also allows for an expert to provide
the predefined threshold δ. The process is repeated until there are no more directed cycles. Finally, the
undirected edges are oriented based on MI while preserving acyclicity.

Given the necessary background, we now present our learning algorithm for learning causal models from162
data. Our method is purely data-driven – extending this work to exploit domain expertise is an important163
immediate future direction. However, it must be noted that incorporating human advice as inductive bias,164
search constraints and/or orientation knowledge is natural in our framework. In this work, we assume that165
only the data and (if available) some ordering over the variables as inductive bias is provided.166

We use bold capital letters to denote sets (e.g., V) and plain capital letters to denote set members (e.g.,167
Vi ∈ V). Using this convention, we denote the set of variables as V. The goal of our algorithm is to learn168
the joint distribution over all the variables (features and the target) that models causality. Given that there is169
no additional input, it is quite possible that the joint distribution that is purely learned from data may not170
result in a causal model, i.e., the learned network is a general Bayes net (BN) instead of a causal Bayes net171
(CBN). To evaluate this, we verify the learned model on a few benchmarks to demonstrate the efficacy172
of the approach. Beyond empirical evaluations, we provide some theoretical insights on why the learned173
model is causal. Before explaining the procedure, let us formally define the learning task.174
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Given: Data, D =
〈
〈V i

1 , . . . , V
i
n〉
〉m
i=1

, where n is the number of variables, m is the number of examples,175
V is the set of variables,176
To Do: Learn a causal joint distribution, P (V) i.e., a causal BN 〈V, E〉, where E is the set of edges in the177
causal BN.178

One of the challenges with standard BN learners and certainly CBN learners is that of scale. When the179
number of variables is large (as in the real benchmark data set), many structure learning algorithms do not180
scale viably. Hence, we propose a hybrid approach that combines the salient features of both search and181
score, namely the ability to perform local search effectively with the ability of constraint-based methods182
to potentially identify causal models. More precisely, our algorithm performs three steps: learning a183
dependency network from data, detect the cycles and then remove the edges that are mutually independent.184
This process is illustrated in Figure 1. The overall intuition behind this approach is fairly simple: use185
a scalable algorithm to handle a large number of variables and learn a dense model quickly. Since this186
learned model could potentially (and in practice) contain many cycles, we detect and remove edges based187
on mutual information. We then orient the edges ensuring acyclicity. Given that previous literature has188
demonstrated that an information-theoretic measure based on mutual information between two variables189
X and Y can be used as a reliable measure for quantifying the strength of an arc X → Y (Janzing et al.190
(2015); Solo (2008); Weichwald et al. (2014)), we use CSI and MI to establish the causal relationships.191

Figure 2. First the DN is learned (notice the two bi-directed edges). All the bidirected edges in the DN are
converted to undirected edges (BD and EF). The shorted cycle A → C → B → A is identified and the
edge A → C is removed based on MI. Since no more cycles exist, the undirected edges are considered
next. E −−F becomes F → E and then B −−D becomes D → B. The resulting network is acylic and
exploits both CSI and MI in becoming a causal network.

We now describe each of these steps in detail before presenting the high-level algorithm.192

3.1 Learning context-specific independences193

The first step of our learning algorithm is to learn distributions of the form P (Vi|V\Vi), i.e., a conditional194
for a variable given all the other variables in the data. To this effect, we employ the intuition that a structured195
representation of a conditional probability table (CPT) such as a tree can be used inside probabilistic models196
to capture context-specific independence (CSI) (Boutilier et al. (1996)). Specifically, we learn a single197
probability tree for each variable Vi given all the other variables in the data. The tree CPDs can capture198
context specific independence based on regularities in the CPTs of a node. Tree CPD for a variable is a199
rooted tree with each interior node representing tests on parent vertices and leaf nodes have the probability200
conditioned on particular configurations along the path from the root to leaf. The key idea here is that each201
tree can capture the CSI that exists between the variable’s parents and the target variable conditioned on the202
values of some of the other parents. This is an important step as it has been recently demonstrated that CSI203
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can be used for identifying causal effects by Tikka et al 2019 . While their work derives the calculus for204
identifying the causal relationships, we go further in employing the use of CSI in larger data sets. Further,205
our finally learned network can be considered as a special case of the structural causal model proposed by206
Tikka et al where the structured representations (trees) are used to model the CSIs and the edges of the207
graphical model are aligned using information-theoretic measures.208

To learn CSI at every variable, we employ the notion of DNs. Recall that a DN is a (potentially cyclic)209
graphical model that approximates the joint distribution as a product of conditionals. To learn such a DN,210
we iterate through every variable and learn a (probabilistic) decision tree for each variable given all the211
other variables, i.e., the goal is to learn P (Vi|V \ Vi) for each i where each conditional is modeling using212
a probabilistic tree. We observe that in this step, one could provide an important domain knowledge –213
ordering between the variables. This variable ordering can be used to construct expert guided causal model214
which introduces CSIs that satisfies the ordering constraints. As shown by Tikka et al, the conditional215
distributions induced using these CSIs can be effectively employed in identifying do calculus (Tikka et al.216
(2019)).217

The advantage of this approach is that it learns the qualitative relationships (structure) and quantitative218
influences (parameters) simultaneously. The structure is simply the set of all the variables appearing in219
the tree and the parameters are the distributions at the leaves which can be reused in later stages. The220
other advantage is that the approach is that it is easily parallelizable and scalable. Thus our method can be221
viewed as one that could scale up learning of causal models to real large data sets. The third advantage of222
the approach is that being a separate step, this can be integrated with other causal search methods such as223
the one proposed by Tikka et al. Exploring these connections is an interesting future direction.224

Let us denote the conditionals learned over all the variables (potentially given some order) as DN , the225
dependency network induced from the data. In most cases, this DN contains cycles since these conditionals226
are learned independent of each other. This can be an advantage and a disadvantage. The advantage is its227
efficiency as the costly step of checking for acyclicity can be avoided during learning and a disadvantage228
since it is an approximate model. Shorter cycles can result in larger approximations (Heckerman et al.229
(2000)). After learning this DN , we perform an additional step. We convert edges of the form X ← Y and230
X → Y to X −−Y . This is similar to the PC algorithm (Spirtes et al. (2000)) in that strong correlation231
between two variables are considered as undirected and will be oriented in the final step of our algorithm.232
Next, we convert the DN to an intermediate CBN with potential undirected edges.233

3.2 Detecting and removing cycles234

To convert the DN to a CBN, the first step is to detect and remove cycles. A naı̈ve approach to deleting235
edges would be: search for an edge, remove it, check for acyclicity and log-likelihood (Hulten et al.236
(2003)). The key limitation of this approach is that the resulting model is not necessarily causal. The use of237
log-likelihood does improve the training performance but does not guarantee causality. Hence, inspired by238
the research in information-theoretic approaches to causality (Janzing et al. (2015); Solo (2008); Weichwald239
et al. (2014)), we employ mutual information for identifying the edges.240

For detecting cycles, several methods exist (Kahn (1962)) including topological sorting. Any of these
methods would be compatible with our learning algorithm. For the purposes of our data sets, we employ
depth-first search (DFS). One key aspect of our DFS is that we identify short cycles. Recall that DN
approximates a joint distribution as a product of conditionals.

P (V1, ..., Vn) ≈
∏
i

P (Vi|V \ Vi)
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The theoretical analysis of the approximation is based on the inference algorithm, specifically Gibbs241
sampling and on the size of the data. In simple terms, if the Gibbs sampler converges on a large data set,242
the approximation is quite effective (Heckerman et al. (2000); Neville and Jensen (2007)). In practice, we243
have previously observed that when the cycles are large, i.e., the size of the clique in the undirected graph,244
the approximation is quite robust (Natarajan et al. (2012); De Raedt et al. (2016)).245

With this insight, in the first step of cycle detection, we identify the short cycles. The intuition is that246
short cycles lead to larger approximations and removing them would render the product of conditionals247
closer to the true joint distribution. Once the shortest cycle is identified, the next step is identifying the edge248
to remove from this short cycle. For this purpose, we employ mutual information (MI). As a pre-processing249
step, we compute the MI between every pair of variables and sort them by the MI. We consider MI instead250
of conditional MI as one of our key goals is efficiency. Computing conditional MI requires us to condition251
on a large set of related variables in the DN. This requires both repeated computations and a large number252
of conditionals. Thus, first, we detect the smallest directed cycle. We then break the cycle by removing253
edges that are smaller than a predefined threshold of δ. In our work, we simply choose δ to be the MI with254
the largest difference to the previous MI value in the sorted list. We use Maximum adjacent difference in255
the sorted list, as our δ in our setting, unless a default value is presented by an expert as domain knowledge.256
Large values of δ would result in a sparse graph and lower values δ will result in a dense graph. Once these257
edges are removed, the process continues where the next smallest cycle (if one exists) is detected and the258
low MI edges are removed and so on. Coupling CSI with MI between variables X and Y quantifies259
the strength of X → Y .260

To summarize, from the DN, we create an initial CBN by detecting cycles and removing edges with low261
dependencies. Now the last step is to orient the bi-directed edges which are undirected and then learn the262
parameters of the resulting causal BN.263
3.3 Edge orientation and parameter learning264

Once the directed cycles are detected and removed, we focus on the undirected edges (in reality bi-265
directed edges). Inspired by the PC algorithm (Spirtes et al. (2000)), we orient the edges in the final step266
using two criteria – MI and acyclicity. We orient the edges by removing the edge with the lowest MI if it267
does not result in a cycle. As mentioned earlier, this is similar to that of PC. After all the undirected edges268
have been oriented, the resulting CBN is our casual network skeleton.269

We estimate the parameters of this CBN using standard MLE (Pearl (1988a)). All our data sets are fully270
observed and hence MLE suffices for learning the conditional distributions. For the parameters, we learn271
a decision tree locally and in parallel using only the variables in the parent set of every node to capture272
the conditional distribution. Extending this to handle missing data is a significant extension as it does not273
merely affect the parameter learning but the structure search as well. Once the parameters are learned, we274
now have the full causal BN learned from data.275
3.4 DN2CN Algorithm276

Before we provide the algorithm, we present an example in Figure 2. There are 6 variables 〈A, ..., F 〉.277
First, a DN is learned where there are cycles and bi-directed edges. Next, the smallest cycle 〈A,B,C〉 is278
detected and the edge with least MI A→ C is removed. Now, there are no directed cycles in the CBN (in279
the general case, there could be more cycles that need to be removed). Note that there are two undirected280
edges between B and D, and between E and F . First, the edge between D and B is oriented based on MI281
and the fact that this does not create a cycle. Finally, the edge between E and F is oriented to obtain the282
CBN. The parameters are then learned by learning a decision-tree for each conditional.283
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This approach is formally presented in Algorithm 1 and as a flow chart in Figure 1. As can be seen284
in the algorithm, the first step is to learn the DN (line 4). The LEARNPARENTSET function in line 3 of285
Algorithm 2 learns a tree and collects the set of parents from that set. It can optionally take an ordering286
among the variables provided by a domain expert (if any). Then the algorithm computes the mutual287
information (MI) for all the edges. One could instead simply wait till the cycles are detected and then288
compute the MI but we compute it outside the cycle detection step. The algorithm then iteratively removes289
the least informative edges till no more cycles are present in the graph. We orient the undirected edges (If290
any) ensuring acyclicity. Then the parameters are then learned from the data.291

Theoretical Analysis: A natural question to ask is – what is the complexity of our approach? We present292
an initial analysis of this work, by adapting the arguments from the literature (see for instance the original293
reducibility result(Karp (1972))). We present our result by analyzing each component of the algorithm.294
Tightening these bounds with appropriate heuristics is left for future work.295

Let v be the number of vertices (features), n be the number of training examples. In Algorithm 1, while296
learning DN , we learn a decision tree locally [line 4]. This requires O(n2d) where d is the depth of the297
tree (Su and Zhang (2006)). While this can be reduced to O(n · d), this requires making independence298
assumptions among the variables. Our tree growing procedure is fairly standard without much optimization.299
Hence the complexity of learning a full DN is O(v · n2d). However, the trees can be learned in parallel,300
thus reducing the complexity to O(n2d).301

Cycle detection (line-12) has a complexity of O(v(v + e)), where v is no. of nodes and e is number of302
edges in the network (e is asymptotically O(v2). A single cycle detection running a DFS to search for303
the cycle thus is O(v2). Doing this for all the variables will result in O(v3) for the entire cycle detection.304
Sorting the edges to compute the MI requires O(v2log(v)). Edge orientation is O(v2).305

Thus the complexity DN2CN is dominated by two terms – O(v3) the cube of the number of edges and306
O(n2d), the term that depends on the data. Since, typically, n > v2 to learn a meaningful model, our final307
complexity is O(n2d). Optimizing the tree learner to lower this complexity and better cycle detection308
methods to reduce the cubic complexity can significantly improve the asymptotic bound. These are open309
research directions.310

Discussion: The proposed approach has some salient advantages - (1) One could parallelize the learning311
of the DN to scale it up to very large data sets. (2) The computation of the MI can also be parallelized. (3)312
Any traversal algorithm could be used to detect cycles in the graph for pruning. (4) There are two levels313
of independence used in this algorithm; - a) context specific independence (CSI) to identify potentially314
independent influences. Inspired by the work of Tikka et al. 2019], we rely on the ability of CSI to model315
interventions; in the context of interventions, any influences that otherwise have a causal effect thereon316
variable, are removed. Learning a BN as a series of trees for every interacting variable facilitates the ability317
to model such CSI and so are able to represent interventions in sufficient detail to reason about conditional318
independence properties, b) Mutual independence which when combined with expert domain knowledge319
can potentially yield even causal influences. (5) The algorithm also has two types of controls (similar to320
regularizations) to combat overfitting. First is to control the depth of trees and second is selecting the321
number of edges to remove. (6) Finally, the use of both local search and constraint based methods inside322
the algorithm enables it to learn effectively at scale.323

Before presenting our empirical results, we briefly discuss the interpretability of the resulting network.324
DN2CN represents causal dependencies using BNs that provide an intuitive visualisation by modeling325
features as nodes and the statistical association between the features as edges. This statistical interpretability326
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is similar in spirit to traditional interpretability. This allows to answer questions such as ”does BMI327
influence susceptibility to Covid?”. Moreover, it has been argued that developing an effective CBN for328
practical applications requires expert knowledge when data collection is cumbersome Fenton and Neil329
(2012). This applies to domains such as medicine, similar to our experimental evaluation. A typical330
characteristic of these domains is that they can be data-poor and knowledge-rich due to several decades331
of research. Kahneman et al. showed that human beings tend to interpret events in terms of cause-effect332
relations Kahneman et al. (1982); Pennington and Hastie (1988). Also, causal models are easier to333
construct, easier to modify and easier to interpret by humans Pennington and Hastie (1988); Henrion334
(1987). Following these observations, our framework can incorporate both data-driven and human inputs,335
thus allowing to learn a more robust hypothesis. Lipton explains that with interpretable models it becomes336
imperative to guarantee fairness Lipton (2018). It must be noted that we can extend DN2CN’s interactive337
framework and leverage the Bayesian networks learnt to assess the bias as well as compare multiple models338
in terms of their fairness and performance Chiappa and Isaac (2018). In summary, our framework can339
leverage interpretability as a tool to verify causal assumptions and relationships. We verify the above claims340
empirically in a real data set and 2 synthetic benchmark causal data sets in the next section.341

Algorithm 1 DN2CN: Dependency network to Causal Network
1: Given: Data D; Variables V; Ordering among variables (if any) O := ∅; Threshold δ := 0
2: function DN2CN(D,V, O)
3: E ← ∅ . Initialize edge set
4: DN ≡ (V, E) = LEARNDN(D, V,O)
5: for all edge ∈ E do
6: MI[edge] ← COMPUTEMUTUALINFO(edge)
7: end for
8: SortedMI[edge] ← SORTED(edge, reverse = True) . Sort in descending order
9: if δ = 0 then

10: δ = ARGMAX ABSDIFF(SortedMI[edge]) . Max absolute diff of 2 contiguous elements in
array SortedMI

11: end if
12: C ← DETECTCYCLES(DN) . Using any sort
13: for all cycle ∈ C do
14: for all e ∈ cycle do
15: if SortedMI[e] ≤ δ then
16: E ← E \ e . Remove edges if exist in DN
17: end if
18: end for
19: C ← C \ cycle
20: . Update cycles list after each iteration
21: if C = ∅ then . No more cycles left
22: break
23: end if
24: end for
25: V̂, Ê := ORIENTEDGES(V,E) . Introduce directions ensuring acyclicity as required
26: return (V̂, Ê)
27: end function

4 EMPIRICAL EVALUATION - DOMAINS
To assess the effectiveness of our method, we perform extensive evaluations on both synthetic as well as342
real benchmark causal data sets. In all our data sets, we have the underlying true causal graph, and we apply343
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Algorithm 2 LEARNDN: Learn Dependency Network
1: function LEARNDN(D, V, O)
2: E ← ∅ . Initialize edge set
3: for all var ∈ V do
4: P(var) ← LEARNPARENTSET(var, {V \ var}O, D) . Parent set {V \ var} is

constrained by O (if any)
5: for all parent ∈ P(var) do
6: E ← E ∪ {parent→ var}
7: . Add new directed edge between parent and var
8: end for
9: end for

10: return (V,E)
11: end function

our method as well baseline approaches to reconstruct the causal network from the data to demonstrate the344
effectiveness. We first describe the data sets used before discussing the baselines used.345

4.1 Benchmark1: LUCAS - LUng CAncer Simple data set346

The LUCAS (LUng CAncer Simple set) data set from causality challenge (Guyon et al. (2008)) represents347
a synthetic medical diagnosis problem, where the task is to identify patients with lung cancer given a set of348
socioeconomic and clinical factors of putative causal relevance. The generative model is a Markov process,349
so the value of the children node is stochastically dependent on the values of the parent nodes’. The data350
set consists of 2000 observations. Ground-truth consists of 12 binary variables that include anxiety, peer351
pressure, day of birth, smoking, genetics, yellow finger, lung cancer, attention disorder, cough, fatigue,352
allergy, car accidents and their causal relations. There are no missing values in the data set. As the data are353
generated artificially by causal BN with variables, the true nature of the underlying causal relationships is354
known. Hence we use this benchmark data set for illustrating the effectiveness of our approach.355

4.2 Benchmark2: Asia data set356

The ASIA Network is an expert-designed causal network with logical links. This BN was originally357
presented by Lauritzen and Spiegelhalter (Lauritzen and Spiegelhalter (1988)), who have specified358
reasonable transition properties for each variable given its parents. It is an 8 node BN that describes the359
effect of visiting Asia and smoking behavior of an individual on the probability of contracting tuberculosis,360
cancer or bronchitis. The underlying structure expresses the known qualitative medical knowledge. Each361
node in the network represents a feature that relates to the patient’s condition. The example is motivated as362
follows: “Shortness-of-breath (called dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,363
or none of them, or more than one of them. A recent visit to Asia increases the chances of tuberculosis,364
while smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest365
X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence366
of dyspnea.” The data set contains 10000 observations and eight binary variables whose values are 0 or 1.367
There are no missing values in the data set.368

4.3 Causal Protein-Signaling Networks in human T cells data set369

This data analyzed and published by Sachs et al. (2005) is a multivariate proteomics data set, widely370
used for research on causal discovery methods. This is a biological dataset with different proteins and371
phospholipids in human immune system cells. The data comprises of the simultaneous measurements of 11372
phosphorylated proteins and phospholypids (PKC, PKA, P38, Jnk, Raf, Mek, Erk, Akt, Plcg, PIP2, PIP3)373
derived from thousands of individual primary immune system cells. In the data set we considered, there are374
1). 1800 observational data points subject only to general stimulatory cues, so that the protein signalling375
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Figure 3. The learned network for (a) Our Approach DN2CN, (b). PC algorithm, (c). Fast Greedy
Equivalence Search algorithm (FGES) and (d) Fast Causal Inference algorithm (FCI) and the summary
results on LUCAS data set (best viewed in color). Each node represents a feature and the arcs represent
causal relationships, i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES
had a 100% true positive rate with a 0 false positive and false negative rates. PC and FCI missed 2 edges
each. PC and FCI also introduced spurious edges (incorrect edge orientation).

paths are active; 2). 600 interventional data points with specific stimulatory and inhibitory cues for each376
of the following 4 proteins: pmek, PIP2, Akt, PKA; & 3). 1200 interventional data points with specific377
cues for PKA. Overall, the data set consists of 5400 instances with no missing value. The 11 variables378
are discretized into 3 bins (low, medium and high) for each feature respectively. A network consisting379
of 18 well-established causal interactions between these molecules has been constructed supported with380
biological experiments and literature (Sachs et al. (2005)). This data is a good fit to test our proposed causal381
discovery method, as the knowledge about the “ground truth” is available, which helps verification of382
results. Hence the goal of the data set is to unearth protein signalling networks, originally modeled as CBN.383

5 EXPERIMENTAL RESULTS
In our experiments, we aim to answer the following questions explicitly:384

Q1: Does the learned model identify influencing variables as in the “Ground truth” network?385

Q2: How does the resulting network produced by DN2CN compare to standard constraint based approaches386
qualitatively?387

Q3: How does the resulting network produced by DN2CN compare to standard constraint based approaches388
quantitatively?389
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Figure 4. The learned network for (a) Our Approach DN2CN, (b). PC algorithm, (c). Fast Greedy
Equivalence Search algorithm (FGES) and (d) Fast Causal Inference algorithm (FCI) and the summary
results on ASIA data set (best viewed in color). Each node represents a feature and the arcs represent causal
relationships, i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES had a
100% true positive rate with a 0 false positive and false negative rates. PC and FCI both missed 2 edges.
Also, PC introduced two spurious causal edges in the resultant network.

Specifically, we consider two different types of experiments – the first on evaluating goodness of the390
model on the synthetic benchmark data sets and the second on verifying if the approach can learn a good391
causal model on the real data set.392

Setup: In DN2CN, we used a tree depth of 2 for all the experiments. We set delta as 0.015 for both393
LUCAS and Asia data sets and 0.25 for the real T cells data set.394

We compare DN2CN to three of the well-known computational methods for causal discovery ( Glymour395
et al. (2019)). Two of these algorithms are commonly employed constraint-based algorithms – PC and396
Fast Causal Inference (FCI) Spirtes et al. (2000). The third algorithm is a score-based algorithm – Fast397
Greedy Equivalence Search (FGES) Ramsey et al. (2017). It must be mentioned that PC, FCI and FGES,398
are widely applicable as they handle various types of data distributions as well as causal relations, given399
reliable conditional independence testing methods. We strongly believe that these attributes make them a400
strong as well as a fair baseline for DN2CN as suggested by Glymour et al. (2019).401

We further discuss each of the baseline approaches and their corresponding experimental settings used,402
as follows:403

• PC algorithm (denoted PC) (Spirtes et al. (2000)) starts with a fully connected undirected graph, tests404
all possible conditioning set for every order of conditioning and then finally orients the edges. Test405
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Figure 5. The learned network for (a) Our Approach DN2CN, (b). PC algorithm, (c). Fast Greedy
Equivalence Search algorithm (FGES) and (d) Fast Causal Inference algorithm (FCI) and the summary
results on T-Cell data set (best viewed in color). Each node represents a feature and the arcs represent
causal relationships, i.e., X→ Y represents that X is a cause of Y. This is a challenging data set where
DN2CN had missed one edge and introduced 2 spurious edges. PC, on the other hand, had significantly
worse performance with 10 missed edges and 4 spurious ones.

statistic we used is the mutual information for PC algorithm, to keep the comparison fair. We used406
type I error rate; α = 0.05 in our setting.407
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• Fast Greedy Equivalence Search algorithm (denoted FGES) (Ramsey et al. (2017)) is an optimized and408
parallelized version of an algorithm developed by Meek (Meek (1995)) called the Greedy Equivalence409
Search (GES). GES is a CBN learning algorithm that starts with an empty graph, heuristically performs410
a forward stepping search over the space of CBNs and stops with the one with the highest score.411
GES finally performs a backward stepping search that iteratively removes edges until no single edge412
removal can increase the Bayesian score. We use the modified BIC (Bayesian information criterion)413
(Schwarz et al. (1978)) score rewritten as ScoreBIC(B : D) = 2L(D; θ̂, B) − k log |D|, where L414
is the likelihood, k the number of paramters, and |D| the sample size. So higher BIC scores will415
correspond to greater dependence.416

• Fast Causal Inference algorithm (denoted FCI) (Spirtes et al. (2000)) is a constraint-based algorithm417
which learns an equivalence class of CBNs that entail the set of conditional independencies that are418
true in the data. FCI then orients the edges using the stored conditioning sets that led to the removal419
of adjacencies earlier. We use the same modified BIC score as with the other baseline i.e., FGES420
algorithm.421

For PC algorithm we used the open-source implementation i.e. stable-PC in bnlearn (Scutari (2009)) while422
TETRAD (Spirtes et al. (2000)) was used to run FGES and FCI algorithms; a reliable tool for causal423
explorations. Data set details are presented in section 3 which describes the number of variables and the424
number of training examples.425

Results: Recall that our goal is faithful modeling of underlying data. In addition, we also demonstrate426
the training log-likelihood of the learned model for 1). ground truth model, 2). model learnt using DN2CN427
algorithm, 3). model learnt using PC algorithm, 4). model learnt using FGES algorithm and 3). model428
learnt using the FCI algorithm. This is to say that our analysis is qualitative as well as quantitative.429

To answer Q1 and Q2, consider the networks presented in Figures 3[a-d], 4[a-d] and 5[a-d] respectively.430
These are the learned networks obtained by our approach DN2CN and baseline methods PC, FGES & FCI431
summarized together with the ground truth network. To evaluate the validity of the proposed approach, we432
compared the model arcs with those present in the ground truth. An arc is correct, if and only if the same arc433
exists in the ground truth graph and the orientation of the arc aligns with the orientation in the ground truth434
graph; an arc is considered incorrect, if the arc does not exist in the ground truth graph or if it exists but its435
orientation is the opposite of the true orientation. Hence, in all the data sets, to understand the effectiveness436
of DN2CN, motivated by Sachs et al. (2005); Gao and Ji (2015); Yu et al. (2019) we summarize the arcs437
learned by our method as well as PC, FGES and FCI for each data set using the following metrics:438

• True Edge Rate, is the fraction of the true connections in the ground truth network that our approach439
(or PC or FGES or FCI) captures correctly, i.e., true positive;440

• False Edge Count, for connections that are not in the ground truth network, but which were captured441
by our approach (or PC or FGES or FCI), i.e., false positive;442

• Missed Edge Rate, is the fraction of the true edges missed in the ground network by our approach (or443
PC or FGES or FCI), i.e., a false negative.444

As can be observed our algorithm DN2CN and baseline algorithm FGES had a 100% true positive rate445
with a 0 false positive and false negative rates in both LUCAS and ASIA data sets. However, the other446
baselines methods PC and FCI both missed 2 edges in LUCAS as well as ASIA data sets. In addition, the447
PC algorithm introduced spurious causal flows in both LUCAS and ASIA data sets. This clearly establishes448
that our framework is indeed capable of retrieving the full causal model while learning only from the data.449
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Methods

Data sets GROUND TRUTH DN2CN PC FGES FCI

Lucas -12130.83 -12130.83 -12178.59 -12130.83 -12161.49

Asia -22212.85 -22212.85 -22212.85 -22212.85 -23747.1

Sachs -38723.1 -38081.29 -41930.74 -35782.43 -40822.13

Table 1. Table comparing the log-likelihood estimate in CBN learned using DN2CN and baseline approach
i.e., PC algorithm, Fast Greedy Equivalence Search algorithm (FGES) and Fast Causal Inference algorithm
(FCI) learned directly from data

In the real benchmark data set i.e., Causal Protein-Signaling Network in human T cells, the ground truth450
network and the reconstruction by employing DN2CN, PC, FGES and FCI are illustrated in Figure 5[a-d]451
respectively. It can be observed that our approach DN2CN performs significantly better than all the452
baselines i.e., PC, FGES and FCI. DN2CN missed four edges and introduced four spurious edges. Whereas453
the baseline algorithms PC, FGES and FCI, had significantly worse performance with 13, 11, 14 missed454
edges and 6, 15, 8 spurious ones respectively. On closer inspection at the unexpected edges in our acyclic455
causal model reconstruction, one can see that they actually explain the data quite well. Especially, both456
arcs, PKC =⇒ PKA and Erk =⇒ Akt, can be understood qualitatively in rat ventricular myocytes457
(Wilhelm et al. (1997)) and colon cancer cell lines (Lemaire et al. (1997)), respectively. However, We458
hypothesize that, our DN2CN method missed four causal relationships, that are all involved in cycles. As459
BNs are acyclic by definition, our inference missed these arcs, which is one of the caveats of this approach.460
Extending this to dynamic causal bayesian network to handle feedback loops, remains an interesting future461
research direction.462

Table 1 presents quantitative comparisons between the different methods. In all our experiments, we463
present the numbers in bold whenever they are better than all the other baselines on a data set. It must be464
mentioned that in some cases, PC, FGES and FCI did not yield a directed arc, and we chose a direction465
(ensuring acyclicity) to compute the overall joint log-likelihood on the training set. As can be seen from466
the table, the proposed DN2CN approach produces a network with significantly better joint log-likelihood467
on the training set than the baseline algorithms PC and FCI learning method in all the domains. We can468
see that FGES has better joint log-likelihood than DN2CN in T-Cell data set. One key reason is that the469
resultant network using FGES is relatively denser than other models. FGES introduces 14 spurious causal470
edges leading to increased likelihood. It is well known in the Bayes net learning literature that denser471
the graph is, higher the training set likelihood. As can be seen from the Table in the Figure 5, the false472
edge count of FGES is significantly higher than the other methods. Hence, the denser network can yield a473
much higher training set loglikelihood. This answers Q3 affirmatively: that DN2CN is more effective in474
modelling than the causal method such as PC, FGES and FCI.475

6 CONCLUSIONS
We introduced a scalable causal learning algorithm that is capable of exploiting two types of independencies476
– context-specific independence (CSI) and conditional independence (CI). To exploit CSI, we learn a single477
tree for each variable in the model. Each tree can locally model and capture the CSI. Next, we orient and478
remove edges from this potentially cyclic model by computing the mutual information which allows for479
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capturing the CIs. The intuition is that these two independence metrics have previously been explored in the480
context of causal learning and combining them will allow for learning a robust causal model. Our empirical481
evaluations in the standard data sets clearly demonstrate that the proposed DN2CN method does retrieve the482
true causal model in most of the domains. Most importantly, it does not introduce a denser model than what483
is necessary even if it means sacrificing the training likelihood. Thus a natural regularization is achieved by484
controlling the depth of the trees and the orienting of edges as against other information-theoretic methods485
such as BIC that employs a model complexity penalty.486

There are several possible extensions of future work – adapting and applying these models to real487
problems in the lines of our previous work Ramanan and Natarajan (2019) is an important direction.488
Developing the theoretical underpinnings between CSI and CI with causal models is the next immediate489
direction. Converting the CSI from our models to do calculus and employing them in the context of learning490
from both observational and experimental data is another important problem. Finally, allowing for rich491
domain knowledge and inductive bias to guide the learner to a better causal model is possibly the most492
interesting direction.493
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