
Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning
Mayukh Das

mayukh.das@samsung.com

Samsung R&D Institute, Bangalore

Devendra Singh Dhami

devendra.dhami@utdallas.edu

The University of Texas at Dallas

Yang Yu

yangyu@hlt.utdallas.edu

The University of Texas at Dallas

Gautam Kunapuli

gautam.kunapuli@verisk.com

Verisk Analytics, Inc.

Sriraam Natarajan

sriraam.natarjan@utdallas.edu

The University of Texas at Dallas

ABSTRACT
Recently, deep models have been successfully adopted in several

applications, especially where low-level representations are needed.

However, sparse, noisy samples and structured domains (with multi-

ple objects and interactions) are some of the open challenges inmost

deep models. Column Networks, a deep architecture, can succinctly

capture domain structure and interactions, but may still be prone

to sub-optimal learning from sparse and noisy samples. Inspired by

the success of human-knowledge guided learning in AI, especially

in data-scarce domains, we propose Knowledge-augmented Col-

umn Networks that leverage human advice/knowledge for better

learning with noisy/sparse samples. Our experiments demonstrate

that our approach leads to either superior overall performance or

faster convergence (i.e., both effective and efficient).

ACM Reference Format:
Mayukh Das, Devendra Singh Dhami, Yang Yu, Gautam Kunapuli, and Sri-

raamNatarajan. 2021. Human-Guided Learning of ColumnNetworks: Knowl-

edge Injection for Relational Deep Learning. In 8th ACM IKDD CODS and
26th COMAD (CODS COMAD 2021), January 2–4, 2021, Bangalore, India.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3430984.3431018

1 INTRODUCTION
The re-emergence of Deep Learning (Goodfellow et al., 2016) has

found significant and successful applications in complex real-world

tasks such as image (Krizhevsky et al., 2012), audio (Lee et al., 2009)

and video processing.However, the combinatorial complexity of rea-

soning in relational domains over a large number of relations and

objects has remained a significant bottleneck to overcome. Recent

work in relational deep learning has sought to address this partic-

ular challenge (França et al., 2014, Kaur et al., 2017, Kazemi and

Poole, 2018, Šourek et al., 2015). Column Networks, CLN, (Pham
et al., 2017), a deep architecture composed of several (feedforward)

interconnected mini-columns each of which represents an entity in

the domain, is a particularly promising approach for several reasons

- (1) hidden layers of a CLN share parameters, which restricts the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODS COMAD 2021, January 2–4, 2021, Bangalore, India
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8817-7/21/01. . . $15.00

https://doi.org/10.1145/3430984.3431018

parameter space from exploding with increasing depth, (2) as the

depth increases, the CLN can begin to model feature interactions

of considerable complexity and well as long range relational de-

pendencies and (3) learning and inference are linear in the size

of the network and the number of relations, which makes CLNs

highly efficient. In brief CLNs can fundamentally represent rela-

tional structure in an implicit fashion, unlike other graph-centric

deep models which learn numerical embeddings of relational struc-

tures. However, as our evaluation also illustrates, CLNs have not

overcome the necessity to rely on vast amounts of data for optimal

learning since it does not leverage any knowledge about the prob-

lem domain, similar to most deep architectures. This problem is

even more critical in structured domains since only a small fraction

of relationships are actually true rendering implicit sample sparsity.

It is well known that inductive bias is necessary for optimal

generalization over new instances (Mitchell, 1980). One of the fun-

damental forms of inductive bias comes from knowledge of the

target domain/task. While deep learning does incorporate domain

knowledge (for example, through parameter tying, convolutions,

attention mechanisms or denoising encoders) but they are limited

in their scope and treatment of such knowledge. We are motivated

to develop systems that can incorporate richer and more general

forms of domain knowledge. Human experts can guide learning

by providing rules over training examples and features. The earliest
such approaches combined explanation-based learning (EBL-NN,

(Shavlik and Towell, 1989)) or symbolic domain rules with ANNs

(KBANN, (Towell and Shavlik, 1994)). Another natural way a hu-

man could guide learning is by expressing preferences and has been

studied extensively within the preference-elicitation framework

due to Boutilier et al. (2006). We are inspired by this form of knowl-

edge as they have been successful within the context of inverse

reinforcement learning (Kunapuli et al., 2013), imitation learning

(Odom et al., 2015) and planning (Das et al., 2018).

These approaches span diverse machine learning formalisms,

and they all exhibit the same remarkable behavior: better general-
ization with fewer training examples because they effectively

exploit and incorporate domain knowledge as an inductive bias.

This is the prevailing motivation for our approach: to develop a

framework that allows a human to guide deep learning by in-

corporating rules and constraints that define the domain and its

aspects. Incorporation of prior knowledge into deep learning has

begun to receive interest recently, for instance, the recent work on

incorporating prior knowledge of color and scene information into

deep learning for image classification (Ding et al., 2018). However,

https://doi.org/10.1145/3430984.3431018
https://doi.org/10.1145/3430984.3431018

CODS COMAD 2021, January 2�4, 2021, Bangalore, India Das et al.

in many such approaches, the guidance is not through a human, but
rather through a pre-processing algorithm to generate guidance.
Our framework is much more general in that a human provides
guidance during learning. Furthermore, the human providing the
domain knowledge is not an AI/ML expert but rather a domain
expert who provides rules naturally. We exploit the rich repre-
sentation power of relational methods to capture, represent and
incorporate such rules into relational deep learning models. Note
that our focus is not combining logic and deep networks as several
others have explored this connection for decades since the origin of
neuro-symbolic reasoning to more recent ILP-based neural models
(Kaur et al., 2017, Kazemi and Poole, 2018) . We use �rst-order logic
as a representation language for human knowledge and employ it
in the context of CLNs.

We make the following contributions: (1) we propose the formal-
ism of Knowledge-augmented Column Networks, (2) we present,
inspired by previous work (such as KBANN), an approach to inject
generalized domain knowledge in a CLN and develop the learn-
ing strategy that exploits this knowledge, and (3) we demonstrate,
across four real problems in some of which CLNs have been previ-
ously employed, the e�ectiveness and e�ciency of injecting domain
knowledge. Speci�cally, our results across the domains clearly show
statistically superior performance with small amounts of data. As
far as we are aware, this is the �rst work on human-guided CLNs.

2 BACKGROUND AND RELATED WORK
Using domain knowledge as inductive bias to accelarate learning
has long been explored (Fung et al., 2003, Kunapuli et al., 2010, Le
et al., 2006a, Odom and Natarajan, 2018, Towell and Shavlik, 1994).
Fu et al., (1995) presents a uni�ed view of di�erent variations of
knowledge-based neural networks. Such knowledge based learn-
ing has been proposed for support vector machines (Fung et al.,
2003, Le et al., 2006b) in propositional cases and probabilistic logic
models (Odom and Natarajan, 2018) for relational cases. (Towell
and Shavlik, 1994) introduce the KBANN algorithm which com-
piles �rst order logic rules into a neural network and (Kunapuli
et al., 2010) present the �rst work on applying knowledge, in the
form of constraints, to the perceptron. The knowledge-based neural
network framework has been applied successfully to various real
world problems such as recognizing genes in DNA sequences (No-
ordewier et al., 1991), , robotic control (Handelman et al., 1990) and
recently in personalised learning systems (Melesko and Kurilovas,
2018). Combining relational (symbolic) and deep learning methods
has recently gained signi�cant research thrust since relational ap-
proaches are indispensable in faithful and explainable modeling of
implicit domain structure, which is a major limitation in most deep
architectures in spite of their success. While extensive literature
exists that aim to combine the two (Battaglia et al., 2016, Lodhi,
2013, Rocktäschel et al., 2014, Sutskever et al., 2009), to the best of
our knowledge, there has been little or no work on incorporating
knowledge in any such framework.

Column networks transform relational structures into a deep
architecture in a principled manner and are designed especially for
collective classi�cation tasks (Pham et al., 2017). The architecture
and formulation of the column network are suited for adapting it to
the advice framework. The GraphSAGE algorithm (Hamilton et al.,

2017) shares similarities with column networks since both architec-
tures operate by aggregating neighborhood information but di�ers
in the way the aggregation is performed. Graph convolutional net-
works (Kipf and Welling, 2016) is another architecture that is very
similar to the way CLN operates, again di�ering in the aggregation
method. Diligenti et al., (2017) presents a method of incorporating
constraints, as a regularization term, which are �rst order logic
statements with fuzzy semantics, in a neural model and can be
extended to collective classi�cation problems. While it is similar in
spirit to our proposed approach it di�ers in its representation and
problem setup.

Several recent approaches aim to make deep architectures robust
to label noise by either learning from easy samples with importance
weights or by additional noise-adaptation layers or, may be, by
regularization over virtual adversarial randomization (Goldberger
and Ben-Reuven, 2017, Jiang et al., 2018, Miyato et al., 2018, Patrini
et al., 2017).

While the above approaches enable e�ective learning of deep
models in presence of noise, there are some fundamental di�erences
with our problem setting.

(1) [Type of noise] : We aim to handlesystematicnoise (Odom
and Natarajan, 2018) which is frequent in real-world due to
cognitive bias or sample sparsity.

(2) [Type of error] : Systematic noise leads to generalization
errors (see Example 1).

(3) [Structured data] : K-CLN works in the context of struc-
tured data (entities/relations). Though crucial, structured
data is inherently sparse (most relations are false in the real
world).

(4) [Noise prior] : Most noise handling approaches for deep
models explicitly try to model the noise, which is impossible
for systematic noise. K-CLN instead allows expert knowledge
to guide the learner towards better generalization via an
inductive bias.

Augmented learning with human knowledge has been proven to
be an e�ective strategy in machine learning, probabilistic learning
or sequential decision making, in presence of systematic noise (spar-
sity + sample bias + errors in data recording). Although, pseudo-
labels introduced by Lee, (2013) are used for constructing e�cient
semi-supervised methods in deep learning, weak supervision is
not always successful as it assumes presence of large amounts of
data and certainly not the best approach with noisy data (since the
pseudo-lables are derived from the fully observed label set where
noise could propagate). Advice is typically providedbefore the data
set is encountered i.e., by a domain expert and hence is independent
of the fully labeled data (which can be noisy). Data programming
(Ratner et al., 2016) can be viewed as constraining the data using
weak labels and is orthogonal to our setting since which can be
regarded as constraining the model or hypotheses space.

3 KNOWLEDGE-AUGMENTED COLUMN
NETWORKS

3.1 Column Network: A brief background
Column Networks (Pham et al., 2017) allow for encoding interac-
tions/relations between entities as well as the attributes of such

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2�4, 2021, Bangalore, India

entities in a principled manner without explicit relational feature
construction or vector embedding. This enables us to seamlessly
transform a multi-relational knowledge graph into a deep architec-
ture making them one of the robustrelationaldeep models. Figure 1
illustrates an example column network, with respect to the knowl-
edge graph on the left. Note how each entity forms its own column
and relations are captured via the sparse inter-column connectors.
Consider a graphG = ¹+• � º, where+ = f48g

j+ j
8=1 is the set of

vertices/entities. Without loss of generality, we assume only one
entity type.� is the set of arcs/edges between two entities48 and
49 denoted asA¹48• 49º. Note that the graph is multi-relational,i.e.,
A2 ' where' is the set of relation types in the domain. To obtain
the equivalent Column NetworkC from � , let G8 be the feature
vector representing the attributes of an entity48 and~8 its label
predicted by the model1. � C

8 denotes a hidden node w.r.t. entity48
at the hidden layerC(C= 1• ” ” ” •)is the index of the hidden layers).
Thecontextbetween 2 consecutive layers captures the dependency
of the immediate neighborhood (based on edges/inter-column con-
nectors). For entity48, the context w.r.t.Aand hidden nodes are
computed as,

2C
8A=

1
jNA¹8ºj

Õ

92NA¹8º

� C� 1
9 ; (1)

� C
8 = 6

1C¸ , C� C� 1
8 ¸

1
I

Õ

A2'

+ C
A2C

8A

!

(2)

whereNA¹8º are all the neighbors of48 w.r.t. Ain the knowledge
graphG. Note the absence of context connectors between� C

2 and
� C

4 (Figure 1,right) since there does not exist any relation between
42 and 44 (Figure 1,left). The activation of the hidden nodes is
computed as the sum of the bias, the weighted output of the previous
hidden layer and the weighted contexts where, C 2 R C� C� 1

and+ C
A 2 ' C� C� 1

are weight parameters and1C is a bias for
some activation function6. I is a pre-de�ned constant that controls
the parameterized contexts from growing too large for complex
relations. SettingI to the average number of neighbors of an entity
is a reasonable assumption. The �nal output layer is a softmax over

the pre-�nal layer,) , %¹~8 = � j�)
8 º = B>5 C<0G

�
1; ¸ , ; �

)
8

�
where

� 2 ! is the label (! is the set of labels).

3.2 Problem Setting
For a clearer perspective of the problem we aim to address, let us
consider the following example,

Example 1. We wish to classify whether a published article is about
carcinoid metastasis (Zuetenhorst and Taal, 2005) or is irrelevant, from
a citation network, and textual features of articles. There are several
challenges: (1) Data is implicitly sparse due to rarity of clinical studies,
(2) Some articles may cite other articles about carcinoid and contain
some textual features, but may actually address another topic and (3)
Finally, the presence of systematic noise, introduced by the citation
parser or uninformative abstracts.

The above cases may lead to the model not being able to e�ec-
tively capture certain dependencies, or converge slower, even if they

1Note that since in our formulation every entity is uniquely indexed by8, we use48
and8interchangeably

are captured somewhere in the advanced layers of the deep network.
Our approach attempts to alleviate this problem via augmented
learning of Column Networks using human advice/knowledge. We
formally de�ne our problem in the following manner,

Given: A sparse multi-relational graphG, attributesG8 of each
entity (sparse or noisy) inG, equivalent Column-NetworkC and
access to a Human-expert
To Do: More e�ective and e�cient collective classi�cation
by knowledge augmented training ofC¹\ º, where \ =
hf, Cg)

1 •f+ C
AgC=)

A2' ;C=1•f, � g� 2! i is the set of all the network pa-
rameters ofC.

We developKnowledge-augmentedCoLumnNetworks (K-CLN),
that incorporates human-knowledge, for more e�ective and e�-
cient learning from relational data (Figure 2 illustrates the overall
architecture). While knowledge-based connectionist models are not
entirely new, our formulation provides - (1) a principled approach
for incorporating knowledge speci�ed in an intuitive logic-based
encoding/language (2) a deep model for collective classi�cation in
relational data.

3.3 Knowledge Representation
Any model speci�c encoding of domain knowledge, such as nu-
meric constraints or modi�ed loss functions etc., has limitations,
namely (1) counter-intuitive to the humans since they are domain
expert (2) the resulting framework is brittle and not generalizable.
Consequently, we employ preferences (akin to IF-THEN statements)
to capture human knowledge.

Definition 1. A preference is a modi�ed Horn clause,
^ k•xAttr k ¹Exº ^ ” ” ”̂ r 2R•x•y r ¹Ex•Eyº) » label ¹Ez• �1º ";
label ¹Ek• �2º #¼where�1• �2 2 ! and theEx are variables over entities,
Attr k ¹Exº are attributes of� G andr is a relation." and# indicate the
preferred non-preferred labels respectively. Quanti�cation is implicitly
8 and hence dropped. We denote a set of preference rules asP .

Note that we can always, either have just the preferred label in
head of the clause and assume all others as non-preferred, or assume
the entire expression as a single literal. Intuitively a rule can be
interpreted as conditional rule,IF [conditions hold] THEN label
� is preferred . A preference rule can be partially instantiated as
well, i.e., or more of the variables may be substituted with constants.

Example 2.For the prediction task mentioned in Example 1, a
possible preference rule could be,

hasWord¹E1•\AI"º ^ hasWord¹E2•\domain"º^

cites ¹E2•E1º) label ¹E2•\ irrelevant "º "

Intuitively, this rule denotes that an article is not a relevant clinical
work to carcinoid metastasis if it cites an `AI' article and contains
the word �domain", since it is likely to be another AI article that uses
carcinoid metastatis as an evaluation domain.

3.4 Knowledge Injection
Given that knowledge is provided aspartially-instantiatedprefer-
ence rulesP , more than one entity may satisfy a preference rule.
Also, more than one preference rules may be applicable for a single
entity. The main intuition is that we aim to consider the error of

CODS COMAD 2021, January 2�4, 2021, Bangalore, India Das et al.

Figure 1: Original Column network [diagram src: (Pham et al., 2017)] Figure 2: K-CLN architecture

the trained model w.r.t. both the data and the advice. Consequently,
in addition to the�data gradient"as with original CLNs, there is
a �advice gradient�. This gradient acts a feedback to augment the
learned weight parameters (both column and context weights) to-
wards the direction of theadvice gradient. It must be mentioned
that not all parameters will be augmented. Only the parameters
w.r.t. the entities and relations (contexts) that satisfyP should be
a�ected. LetP be the set of entities and relations that satisfy the
set of preference rulesP . The hidden nodes (equation 1) can now
be expressed as,

� C
8 = 6

1C¸ , C� C� 1
8 � ¹, º

8 ¸
1
I

Õ

A2'

+ C
A2C

8A�
¹2º

8A

!

s.t. �8•�8•A=

(
1 if 8•A8 P

F ¹Ur P
8 º if 8•A2 P

(3)

where82 P and � ¹, º
8 and � ¹2º

8A are advice-based soft gates with
respect to a hidden node and its context respectively.F ¹º is some
gating function,r P

8 is the�advice gradient�andU is the trade-o�
parameter explained later. The key aspect of soft gates is that they
attempt to enhance or decrease the contribution of particular edges
in the column network aligned with the direction of the�advice
gradient�. We choose the gating functionF ¹º as an exponential
»F ¹Ur P

8 º = exp¹Ur P
8 º¼. The intuition is that soft gates are natural,

as they are multiplicative and a positive gradient will result in
exp¹Ur P

8 º ¡ 1 increasing the value/contribution of the respective

term, while a negative gradient results inexp¹Ur P
8 º Ÿ 1 pushing

them down. We now present the�advice gradient�(the gradient
with respect to preferred labels).

Proposition 1. Under the assumption that the loss function with
respect to advice / preferred labels is a log-likelihood, of the formL P =
log%¹~¹P º

8 j�)
8 º, then the advice gradient is,r P

8 = � ¹~¹P º
8 º � %¹~8º,

where~¹P º
8 is the preferred label of entity and8 2 P and � is an

indicator function over the preferred label. For binary classi�cation,
the indicator is inconsequential but for multi-class scenarios it is
essential (� = 1 for preferred label� and� = 0 for ! n �).

Since an entity can satisfy multiple advice rules we take themost
preferred label,i.e., we take the label~¹Pº

8 = � to the preferred
label if � is given by most of the advice rules that49 satis�es. In
case of con�icting advice (i.e. di�erent labels are equally advised),
we simply set the advice label to be the label given by the data,
~¹P º

8 = ~8 (Proof in supplementary appendix). As illustrated in

the K-CLN architecture (Figure 2), at the end of every epoch of
training the advice gradientsare computed and soft gates are used
to augment the value of the hidden units (Equation 3).

Proof for Proposition 1 Most advice based learning methods
formulate the e�ect of advice as a constraint on the parameters or
a regularization term on the loss function. We consider a regular-
ization term based on the advice lossL ¹P º = log%¹~8 = ~¹P º

8 j�)
8 º

and we know that%¹~8j�)
8 º = so‰max¹1� ¸ , � �)

8 º. We consider
1� ¸ , � �)

8 = 	 ¹~8•�)
8 º in its functional form following prior non-

parametric boosting approaches (Odom et al., 2015). Thus%¹~8 =
~¹P º

8 j�)
8 º = exp¹	

¹~¹P º
8 •�)

8 º
º•

Í
~02! exp¹	 ¹~0•�)

8 ºº. A functional

gradient w.r.t.	 of L ¹P º yields,

r P
8 =

mlog%¹~8 = ~¹P º
8 j�)

8 º

m	
¹~¹P º

8 •�)
8 º

= � ¹~¹P º
8 º � %¹~8º (4)

Alternatively, assuming a squared loss such as¹~¹P º
8 � %¹~8ºº2,

would result in an advice gradient of the form2¹~¹P º
8 � %¹~8ºº¹1 �

%¹~8ºº%¹~8º. We observe that in a functional form the advice gra-
dient is the di�erence betweenthe true label distribution and the
predicted distribution(or some function of that di�erence),irrespec-
tive of the the type of losswe choose to optimize. As illustrated in
the K-CLN architecture (in main paper), at the end of every epoch
of training the advice gradientsare computed and soft gates are
used to augment the value of the hidden units as shown in the main
section,

�8•�8•A=

(
1 if 8•A8 P

F ¹Ur P
8 º if 8•A2 P

Proposition 2. Given that the loss functionH8 of original CLN is
cross-entropy (binary or sparse-categorical for the binary and multi-
class prediction cases respectively) and the objective w.r.t. advice is
log-likelihood, the functional gradient of the modi�ed objective is,

r¹H 0
8º = ¹1 � Uº

�
~8� � %¹~8j�) º

�
¸ U

�
� P
8 � %¹~P

8 j�) º
�

= ¹1 � Uºr 8 ¸ Ur P
8 (5)

where0 � U � 1 is the trade-o� parameter between the e�ect of
data and e�ect of advice,�8 and� P

8 are the indicator functions on the

label w.r.t. the data and the advice respectively andr 8 andr P
8 are

the gradients, similarly, w.r.t. data and advice respectively.

Proof for Proposition 2: The original objective function (w.r.t.data)
of CLNs is cross-entropy. For clarity, let us consider the binary

Human-Guided Learning of Column Networks:
Knowledge Injection for Relational Deep Learning CODS COMAD 2021, January 2�4, 2021, Bangalore, India

prediction case, where the objective function is now a binary cross-
entropy of the form,H = � 1

#
Í #

8=1~8 log¹%¹~8ºº ¸ ¹ 1� ~8º log¹1�
%¹~8ºº.

Ignoring the summation for brevity, for every entity8, H8 =
~8 log¹%¹~8ºº ¸ ¹ 1 � ~8º;>6¹1 � %¹~8ºº. Extension to the multi-label
prediction case with a sparse categorical cross-entropy is straight-
forward and is an algebraic manipulation task. Now, from Propo-
sition 1, the loss functionw.r.t.advice is the log likelihood of the
form, L P = log%¹~P

8 j�) º. Thus the modi�ed objective is,

H 0
8 =¹1 � Uº »~8 log ¹%¹~8ºº ¸ ¹ 1 � ~8º log ¹1 � %¹~8ºº¼

¸ Ulog¹%¹~P
8 ºº (6)

where U is the trade-o� parameter.%¹~º = %¹~j�) º can be im-
plicitly understood. Now we know from Proposition 1 that the
distributions,%¹~8º and%¹~P

8 º, can be expressed in their functional
forms, given that the activation function of the output layer is a
softmax, as%¹~8º = exp¹	 ¹~8•�)

8 ºº•
Í

~02! exp¹	 ¹~0•�)
8 ºº. Taking

the functional (partial) gradients (w.r.t. 	 ¹~8•�)
8 º and 	

¹~P
8 •�)

8 º
) of

the modi�ed objective function (Equation 6), followed by some
algebraic manipulation we get,

r¹H 0
8º =¹1 � Uº»~8�8 � ~8%¹~8º � %¹G8º ¸ ~8%¹~8º¼ ¸U¹� P

8 � %¹~P
8 ºº

=¹1 � Uº ¹~8� � %¹~8ºº ¸ U
�
� P
8 � %¹~P

8 º
�

Hence, it follows from Proposition 2 that the data and the ad-
vice balances the training of the K-CLN network parameters\ P

via the trade-o� hyperparameterU. When data is noisy (or sparse
with negligible examples for a region of the parameter space) the
advice/knowledge (if correct) induces a bias on the output distribu-
tion towards the correct label. Even if the advice is incorrect, the
network still tries to learn the correct distribution to some extent
from the data (if not noisy). The contribution of the e�ect of data vs
e�ect of advice will primarily depend onU. If both data and human
advice are sub-optimal, correct label distribution is not learnable.

3.5 The Algorithm
Algorithm 1 outlines all the key steps.Kcln() , the main procedure
[lines: 1-14], trains a Column Network using both the data (the
knowledge graphG) and the human advice (set of preference rules
P). It returns a K-CLNCP where\ P are the network parameters,
which are initialized to any arbitrary value (0 in our case; [line:
3]). Our gating functions are piece-wise/non-smooth and apply
only to the subspace entities, features and relations that satisfy
the preference rules. So, as a pre-processing step, we create tensor
masks that compactly encode such a subspace via the procedure
CreateMask() [line: 4].

The networkCP ¹\ P º is then trained through multiple epochs
till convergence [lines: 6-12]. At the end of every epoch the output
probabilities and the gradients are computed and stored in a shared
data structure [line: 11] to be accessed in the next epoch. Training
is largely similar to original CLN withtwo key modi�cations[line:
9] - (1) Equation 3 is the modi�ed expression for hidden units.(2)
The data trade-o�1 � Uaugments the original loss and the advice
trade-o� U, is used to compute the gates. ProcedureCreateMask()

Algorithm 1 K-CLN: Knowledge-augmentedCoLumn Networks

1: procedure KCLN(Knowledge graphG, Column networkC¹\ º, Advice
P , Trade-o� U)

2: K-CLN CP ¹\ P º C¹ \ º • modi�ed hidden units Eqn 3
3: Initialize \ P f 0g • initialize parameters of K-CLN
4: M P = hM, •M 2•M ;014; i CreateMask (G•P)

• mask8 entities/relations/labels2 P
5: Initial gradients88 r P

8•0 = 0; 8 2 P
6: for epochs k=1 to convergencedo

• convergence criteria same as original CLN
7: Get advice gradientsr P

8•¹: � 1º for prev. epoch: � 1

8: Gates� P
8 •� P

8•A exp¹Ur P
8 � M P

8 º

9: Train CP using Equation 3; Update\ P

10: Compute88 %¹~8º from CP • for current epoch:
11: Store88 r P

8•: � ¹~¹P º
8 º � %¹~8º

• Obtain� ¹~¹P º
8 º (M ;014;

12: end for
13: return K-CLN� P

14: end procedure

15: procedure CreateMask (Knowledge graphG,AdviceP)
16: M , »� � j$ j¼ ;

• � : feature length;j$ j: # entities whereG = ¹$• ' º
17: M 2 »j$ j � j$ j¼ ; ; M ;014; »j$ j � ! ¼ ;

• M , : entity; M 2: context &M ;014; : label mask
18: for each preference? 2 P do
19: if 88 2 $ ^ 8 A 2 ' : 8andAsatis�es? then
20: M , »G•8¼ 1 • Gis the feature a�ected by?
21: M 2 »8• 9¼ 1 • A= h8• 9i 2 ' ; 9< 8; 9 2 $
22: M ;014; »8• �¼ 1; s.t.LabelOf (8j?) = �
23: end if
24: end for
25: return hM, •M 2•M ;014; i
26: end procedure

[lines: 15-27] constructs the tensor mask(s) over the space of enti-
ties, features and relations/contexts that are required to compute
the gates (as seen inline: 8). There are3 key componentsof the
advice mask. They are -(1)Entity maskM , (#entities� #features),
indicates entities and relevant features are a�ected by the advice,
(2) Context maskM 2 (#entities� #entities), indicates the contexts
that are a�ected (relations are directed, so it is asymmetric),(3)
Label maskM ;014;, indicates the preferred label of the a�ected enti-
ties, in a one-hot encoding. The masks are iteratively computed for
every preference [lines: 19-25]. This includes satis�ability check-
ing, ? 2 P [line: 20], which is achieved via subgraph matching
on the knowledge graphG (preference rule� subgraph template)
((Das et al., 2019, 2016)). The componentsM , andM 2 are used
in gate computation in main procedure andM ;014; is used for the
indicator � P

8 in the advice gradient.

4 EXPERIMENTS
We investigate the following questions via our evaluation,

(1) Can K-CLNs learn e�ciently with noisy sparse samples i.e.,
performance?

(2) Can K-CLNs learn e�ectively with noisy sparse samples i.e.,
speed of learning?

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Knowledge-augmented Column Networks
	3.1 Column Network: A brief background
	3.2 Problem Setting
	3.3 Knowledge Representation
	3.4 Knowledge Injection
	3.5 The Algorithm

	4 Experiments
	4.1 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

