
Speeding Up Inference in Markov Logic Networks by Preprocessing
to Reduce the Size of the Resulting Grounded Network

Jude Shavlik and Sriraam Natarajan
Department of Computer Sciences

University of Wisconsin, Madison USA

Abstract
Statistical-relational reasoning has received much
attention due to its ability to robustly model com-
plex relationships. A key challenge is tractable
inference, especially in domains involving many
objects, due to the combinatorics involved. One
can accelerate inference by using approximation
techniques, “lazy” algorithms, etc. We consider
Markov Logic Networks (MLNs), which involve
counting how often logical formulae are satisfied.
We propose a preprocessing algorithm that can
substantially reduce the effective size of MLNs
by rapidly counting how often the evidence satis-
fies each formula, regardless of the truth values of
the query literals. This is a general preprocess-
ing method that loses no information and can be
used for any MLN inference algorithm. We eval-
uate our algorithm empirically in three real-world
domains, greatly reducing the work needed during
subsequent inference. Such reduction might even
allow exact inference to be performed when sam-
pling methods would be otherwise necessary.

1 Introduction
Over the past decade, there has been an increasing interest in
addressing challenging problems that involve rich relational
and probabilistic dependencies in data. Statistical Relational
Learning (SRL) [Getoor and Taskar, 2007], which combines
the power of probability theory with the expressiveness of the
first-order logic, has been actively explored for this reason.

Inference is one of the central problems in these SRL mod-
els. Most approaches ground (i.e., bind variables to constants)
first-order statements and directly use these grounded sen-
tences to produce graphical models, then perform inference
in these models. However, the number of ground objects of-
ten can be prohibitively large and prevent tractable inference.
Consequently, sampling techniques [Domingos and Lowd,
2009; Milch and Russell, 2006] and lifted-inference methods
[Braz et al., 2005; Singla and Domingos, 2008], which avoid
explicitly grounding all the logical statements, have been ex-
plored. In addition to answering statistical queries, learning
of the parameters and structures of these models involve re-
peated (statistical) inference in their inner loops, often in the

presence of hidden variables. Hence accelerating inference is
an important research challenge.

We consider Markov Logic Networks (MLNs)[Domingos
and Lowd, 2009]. For inference, MLNs require counting the
number of grounded statements that are true given the cur-
rent world state. Such counting can become impractical in
the presence of much data, since the number of groundings
can grow exponentially as the number of objects in a do-
main increases. We present an algorithm that we call Fast
Reduction Of Grounded networks (FROG) that rapidly counts
those groundings that are true independent of any subsequent
queries, and hence this information need not be recomputed
repeatedly as queries are asked of the MLN. FROG also pro-
duces a reduced grounded Markov network that can be orders
of magnitude smaller than it would be without FROG’s pre-
processing; in this reduced network only those counts that
are dependent on subsequent queries need to be calculated.

Our method is essentially a pre-processing step that sup-
ports simpler and hence faster inference. For example, con-
sider the statement, ∀x, y, z p(x, y) → q(y, z) ∨ r(x, z). If
each of these logical variables (x, y, z) ranges over one mil-
lion people, then there are 1018 groundings! However, if
we know that p(x, y) is only true for 100 specific ground-
ings (and false otherwise), in one fell swoop we know that
(1012−100)×106 of these groundings are true, regardless of
q(x, y) and r(x, z), and can treat that large set of groundings
as a unit without needing to explicitly enumerate them all.
Should we also know that r(x, z) is false for only 10, 000 of
the remaining 108 groundings of this relation, then we know
that another (108 − 104) groundings are true, and we only
need to consider during inference those 104 of the original
1018 groundings whose truth values depend on the q(x, y)’s.

In the next section, we present background on MLNs and
briefly define some terms we use. In the third section, we
present our algorithm and another worked example. Next, we
present the experimental results in three domains already in
the literature. Finally, we conclude by discussing some areas
of future research and additional related work.

2 Background
SRL combines the strengths of logic (Inductive Logic Pro-
gramming (ILP), relational databases, etc.) and probabilis-
tic learning (Bayesian networks, Markov networks, etc.). An

natarasr
Text Box
Appearing in the Proceedings of International Joint Conference in AI (IJCAI) 2009

ILP system learns a logic program given background knowl-
edge as a set of first-order logic formulae and a set of ex-
amples expressed as facts represented in logic. In first-
order logic, terms represent objects in the world and com-
prise constants (e.g., Mary), variables (x), and functions (fa-
therOf(John)). Literals are truth-valued and represent prop-
erties of objects and relations among objects, e.g. mar-
ried(John, Mary). Literals can be combined into compound
sentences using connectives (→ , ¬, ∧, etc.). It is common
[Russell and Norvig, 2003], to convert sets of sentences into a
canonical form, producing sets of clauses, and FROG assumes
its input is a set of such clauses. A clause is a disjunction of
literals, some of which may be negated, e.g., p(x) ∨ ¬ q(y).
A clause is satisfied if at least one of its literals has the cor-
rect truth value (i.e., if negated, a literal is false; otherwise it
is true). A key aspect of clauses that our algorithm exploits
is that only one of possibly many literals needs to have the
correct truth value in order for a clause to be satisfied.

A ground literal is one with no variables as its arguments,
and a grounded clause is one where all of its literals are
grounded (as is standard with MLNs, we assume we have
finite domains and that all functions are replaced by the con-
stants to which they refer). Grounding refers to the process
of assigning constants to variables. A ground literal can be
true, false or unknown in a given knowledge base. Evidence
literals are facts whose truth values are given or observed in
the domain and query literals are those about which statistical
questions are asked (“what is Prob(siblings(John,Mary)
| evidence)?”). The commonly used Closed World Assump-
tion (CWA) states that for certain literals, if they are not
known to be true, assume they are false. CWA is not applied
to query literals. One can mark additional literals, saying that
CWA should not be applied to them; we call these hidden lit-
erals, because they are not explicitly stated when one makes
queries about conditional probabilities (“hidden” literals will
explicitly appear in an MLN knowledge base).

SRL models add probabilistic semantics to first-order
logic. They often are graphical models whose arcs are either
directed or as is the case in MLNs, undirected. An MLN is a
set of weighted first-order clauses. Given a set of constants,
an MLN defines a (potentially huge) Markov network whose
nodes are the ground literals. Each ground clause becomes
a clique in the Markov Network, and the weight associated
with the clause is the so-called clique potential.

The key calculation in MLNs is the following, where
num(F, s), counts how many times an ungrounded logical
formula F is true in a state s of the world, and where Z is a
normalizing term that ranges over all possible world states:

Prob(World X) = (1/Z)e

(∑
i
weighti×num(Fi,X)

)
(1)

The state-of-the-art algorithm for computing MLN probabil-
ities uses a combination of Markov chain Monte Carlo and
a SAT solver [Domingos and Lowd, 2009]. The structure of
MLNs is typically learned via ILP, while the weights are usu-
ally learned via gradient descent. If there are hidden literals,
statistical inference repeatedly has to be performed in the in-
ner loop of weight learning.

A central issue with inference in MLNs is that while com-

puting probabilities, one counts the total number of ground-
ings. The combinatorics of doing so can be prohibitively
large in many domains. For instance, if a literal has 5 vari-
ables, each of which can take about 100 values, the number
of groundings for that literal alone is 1005, and such sizes
readily occur in real-world domains. Computing the ground-
ings for all the clauses in MLN will thus be at least as hard.
Hence, Poon et al. [2008] proposed a method by which they
evaluate the clauses “lazily.” Their key idea is to cache only
the non-default values of the literals and clauses, and con-
sider only this list for future statistical sampling of possible
world states. We compare and contrast their method, as well
as other related approaches, to ours later.

3 Fast MLN Grounding via FROG
As mentioned, a key issue with MLNs is the counting of the
number of groundings of a clause. While exact inference is
accurate but impractical in many domains, sampling methods
sacrifice accuracy for efficiency. Our algorithm might reduce
the size of a grounded MLN sufficiently to allow exact in-
ference where otherwise it would be intractable, as well as
reduce the size of the grounded network to which sampling
need be applied, possibly increasing accuracy given a fixed
computation-time budget.

We can break down Equation 1’s world state into two sets:
SA, the evidence literals, and SB , the query and hidden liter-
als. Let A be shorthand for the weighted count of the number
of times formulae are satisfied by literals in set SA in state X;
ditto for SB and B, except here B only counts those formula
not already satisfied by a literal in SA. Our algorithm exploits
the fact that eA+B = eA × eB .

Assuming the evidence is unchanged, the “A” part, which
counts the groundings due to the evidence literals, is constant
across all world states, and hence the identical eA appears in
all summands in Z, i.e., Z = eA × (eB1 + eB2 + ... + eBn).
The eA in the numerator and denominator of Eq. 1 cancel and
hence, without any loss of accuracy, we only need to compute
the eBi terms in order to compute probabilities.

In a knowledge base, each literal is in one of the following
cases: it satisfies the clause, it does not satisfy the clause, or
its truth value is is unknown. Roughly speaking, our FROG
algorithm stores the count of the variable groundings that sat-
isfy grounded clauses (since these counts may be needed dur-
ing learning), discards (from specific clauses) those grounded
literals that are known to not satisfy, and keeps those ground
literals that might satisfy grounded clauses not satisfied by
the evidence. If there are many fewer potentially satisfiable
combinations than the total number of possible groundings,
FROG saves substantial work during inferencing.

3.1 The FROG Algorithm
Table 1 presents FROG (the next section presents a worked ex-
ample, and readers may wish to visit that while reading this
section). FROG processes each clause in an MLN indepen-
dently. Any clauses that contain no query nor hidden literals
can be removed from the MLN before FROG starts because
their counts will be constant in all world states (see above).

Assume clause c has distinct variables v1, . . . , vN . For ex-
ample, p(x, y, 1, x) ∨ ¬q(x, z) has three distinct variables,

and literal p only two (even though its arity is four). As it
progresses, FROG maintains the tuples 〈v1, . . . , vN 〉 that can
still satisfy clause c; each such tuple represents a grounding
of c. Initially the number of these is simply

N∏

i=1

| constantsWithTypeOf(vi) |

that is, the product of the number of known constants whose
type matches each vi’s type. The initial tuples can be
recorded implicitly, but as FROG calculates it may need to
record explicit tuples that possibly satisfy clause c, and a key
goal of FROG is to keep the number of explicit tuples rela-
tively small (more details in a later subsection). FROG’s main
goal is, for each clause c, to compute a ”reduced” form of c
containing:

1. The number of times c is true, given the evidence (and
any use of CWA), regardless of the truth value of query
and hidden literals.

2. Any remaining literals in the reduced form of clause c.

3. Any remaining tuples that can satisfy the reduced clause;
the grounded clauses that result from these will be ad-
dressed by some inference method after FROG is done.

Imagine FROG selects clause c’s literal p (later we will dis-
cuss how FROG chooses the order for processing a clause’s
literals). When FROG uses the remaining tuples to ground
literal p, these groundings fall into three disjoint categories:

1. Those whose truth value is known, possibly via CWA,
and satisfy clause c. The number of these we call #satp.

2. Those whose truth value is known and do not satisfy c.
These are counted in #unsatp.

3. Those whose truth value is unknown; counted by
#unkp.

What does FROG do with these statistics?

1. It increments the count of groundings that satisfy clause
c by #satp.

2. If #unkp = 0, FROG can drop literal p from the reduced
version of clause c; otherwise it is kept and it will need
to be dealt with during inference following FROG’s pro-
cessing.

3. If #unkp + #unsatp = 0, FROG need no longer con-
sider this clause; all of its groundings have been ac-
counted for and any unprocessed literals will not appear
in the reduced version of c.

4. It updates its “sparse” representation of the tuples re-
maining for this clause.

If FROG has processed all the literals in a clause but retained
no literals, then the clause is unsatisfied (i.e., false) for any
remaining tuples, because no literal satisfied the clause when
using these variable bindings. After reducing all the clauses
provided to it, FROG merges identical remaining clauses,
summing their weights.

Table 1: The FROG Algorithm for Creating a Reduced MLN

Given: an MLN and the grounded evidence
Do:
for each clause c in the MLN
c.done = false
c.reducedLiterals = {}
c.#satisfied = 0
c.tuples = sparse representation of groundings of c
while (c has unprocessed literals and ¬c.done)

heuristically choose unprocessed literal p
compute #satp, #unsatp, and #unkp over c.tuples
add #satp to c.#satisfied
if #unkp 6= 0 add p to c.reducedLiterals
if #unsatp + #unkp = 0 then c.done = true
remove the tuples counted by #satp from c.tuples
mark p as processed

aggregate equivalent ground clauses

3.2 Worked Example and Discussion
As an example, consider the following:

GradStudent(x) ∧ Prof(y) ∧ Prof(z) ∧ TA(x, z)
∧ SameGroup(y, z) → AdvisedBy(x, y).

where x, y, z are of type human. Assume there are 10, 000
people in a school. The total number of groundings that we
need to consider while counting is |x| × |y| × |z| = 1012.

Evaluating this many combinations is challenging. As-
sume that AdvisedBy is the query literal (for all groundings),
and that there are about 1, 000 professors and 2, 000 graduate
students. Imagine that 500 pairs of professors are in the same
group (if A and B are in the same group so are B and A, thus
SameGroup is true 1, 000 times). Among the students 1, 000
of them served as a TA.

FROG proceeds as follows. First, it chooses an unary literal
randomly, say GradStudent(x), and computes the number of
times it is true (2, 000). Applying the closed-world assump-
tion (CWA), it considers the remaining 8, 000 grounding to
be false. These 8, 000 × 104 × 104 groundings satisfy the
clause, and FROG records this count. Only the remaining
2, 000 groundings for x are kept.

Next, FROG processes Prof(y), increases the count of sat-
isfied groundings, and reduces the number of groundings for
y to 1, 000. The same happens for the second occurrence of
Prof and only 1, 000 bindings for variable z remain. So just
from these simple steps, FROG reduces this original set of
1012 groundings to 2× 109.

Once all the literals containing only one unique variable
have been reduced, FROG proceeds to literals with more than
one unique variable. Let us say it now picks SameGroup(y,z)
to reduce. Although there are 106 possible combinations (cor-
responding to the remaining y and z values), only 1, 000 of
them are true; the remaining (106−1, 000) combinations sat-
isfy the clause. Now the number of groundings left to con-
sider is down to 2 × 106, the remaining 1, 000 y:z combina-
tions times the 2, 000 remaining bindings for x.

Processing TA(x,z) occurs next, and after doing so at most
1, 000 bindings for x will remain, and the 1, 000 y:z combi-
nations will likely also be reduced. The final result is that,
out of 1012 groundings, FROG quickly reduces this to at most
106 groundings, without making any approximations.

This huge savings is obtained due to the sparsity of the
domain, but such sparsity is common in real-world tasks.
FROG also works well when (a) CWA is employed and (b) the
clauses in the MLN contain many negated literals, since it is
these literals that CWA allows FROG to use to satisfy clauses.
Horn clauses, which are commonly learned by ILP algo-
rithms, typically contain multiple negated literals, but FROG
can handle cases when there is more than one unnegated lit-
eral, e.g., p(x) ∧ q(y) → r(x, y) ∨ w(y, x), which in clausal
form is ¬p(x) ∨ ¬q(y) ∨ r(x, y) ∨ w(y, x).

FROG becomes increasingly helpful the more distinct vari-
ables a clause involves, since it is this number that determines
the number of groundings.

FROG can handle cases that are considered hard for other
methods. For instance, the lazy-inference method [Poon et
al., 2008] has difficulties handling clauses that contain exis-
tential quantifiers and hence Poon et al. had to remove such
clauses from their experiments. Because FROG precomputes
counts, it becomes possible for us to handle existential quan-
tifiers and we include the clauses with these quantifiers in our
experiments.

FROG does not help on clauses that only contain query
and hidden literals, since no reduction is possible without
evidence (assuming the clauses are not tautological). For-
tunately, FROG can quickly complete its processing of such
clauses - all it needs to do is check if any evidence literals are
present, and if not it is done. Whichever inference process
follows FROG’s processing needs to deal with such clauses.

FROG also provides little gain when clauses only contain
unnegated literals, assuming the evidence contains few cases
where such literals are true. For instance, consider the clause
p(x, y) ∨ q(x, y, z). If there is a total of 1012 combinations
of variables x, y, and z, and q(x, y, z) is a query literal, then
knowing p(x, y) is only true 1, 000 times is of little help. The
reduced clause still involves (1012 − 103) groundings. Here
again the complexity of inferencing needs to be addressed by
some other method, such as lazy inference.

Lazy inference [Poon et al., 2008] shares many of the goals
of FROG. An initialization step in lazy inference is to collect
all those clauses not satisfied by the evidence [Domingos and
Lowd, 2009]. FROG provides an efficient way to perform
this calculation. However, note that since FROG explicitly
produces a reduced MLN, it is possible to judge whether or
not lazy inference is even needed. It might be the case that
the MLN has been so reduced that exact inference is possi-
ble. In addition, by making explicit the reduced MLN, any
MLN inference algorithm can be subsequently employed, in-
cluding those for which lazy versions have not been imple-
mented. Note that FROG and methods such as sampling and
lazy inference are not competitors. Rather, such approaches
can be synergistically combined, since they complement one
another.

As an informal runtime comparison, we also ran Alchemy
(http://alchemy.cs.washington.edu/) using Poon et al.’s lazy

evaluation [Poon et al., 2008] on the CORA dataset (see
next section). Alchemy, written in C/C++ spent 1 hour and
34 minutes for ground-network construction, while the Java-
based FROG took 30 minutes to construct the ground network
(we ran both on the same workstation). The reduced net-
work, which has 106 groundings, is small enough to fit in
main memory, eliminating the need for doing lazy inference.

3.3 Additional Algorithmic Details
The key challenge in FROG is maintaining a sparse represen-
tation of the remaining tuples in each clause, while reducing
the number of these tuples to the minimal required to appear
in the reduced MLN (i.e., the set of reduced clauses upon
which subsequent inference is to take place).

Sometimes it is easy to maintain a sparse representation.
Recall that initially we only need to explicitly keep track of
the constants of each variable’s type. Say we have the clause
¬p(x) ∨ ¬q(y, z) ∨ r(x, y, z, x), where each of the three
variables involves 106 constants and r(x, y, z, x) is true for
half of its groundings. Initially we have 1018 groundings, but
need no storage, because the storage of constants of each type
is shared across all clauses. Should FROG choose to reduce
p(x) and find that only 100 constants do not satisfy ¬p(x), it
would record that (106−100)×1012 groundings are true and
store 100 constants to sparsely represent the remaining 1014

groundings.
Imagine that FROG next chooses to process q(y, z). Here

it would have to explicitly maintain those y:z pairs that do
not satisfy ¬q(y, z); assume there are 1000. Now, FROG is
storing the 100 constants for x and the 1000 y:z pairs. Finally
it needs to process r(x, y, z, x), and at this point FROG needs
to produce the cross product of 105 tuples from the 100 stored
values for x and the 1000 y:z pairs. Notice that if FROG had
instead first processed r(x, y, z, x) it would have needed to
store the 1

2 × 1018 groundings for which this literal is false.
Hence it is important that FROG do a reasonable job of

choosing literals to process without needing to use large
amounts of space. It heuristically does this as follows. First it
processes all literals with at most one distinct variable, such
as p(x), q(y, y), or even r(); such literals only lead to short-
ened lists of size-one (or size-zero) tuples. After this, FROG
scores each unprocessed literal p by (#unsatp + #unkp) /
(#satp + #unsatp + #unkp) and chooses the one with the
lowest score, since this quantity represents the fraction of tu-
ples that remaining after the literal is processed. However,
unless there are no other candidates, FROG defers chooses
literals whose number of remaining groundings is too large
(e.g., 106); note that on later rounds the number of remaining
groundings for such literals may have greatly shrunk.

FROG’s literal selection is a greedy algorithm and hence is
not guaranteed to produce the smallest possible representa-
tion of the remaining tuples throughout FROG’s processing of
a clause. Should an intermediate representation get too large,
our implementation abandons the greedy algorithm and mul-
tiple times attempts to randomly choose the order to process
literals (since clauses are unlikely to have more than a hand-
ful of literals with more than one distinct variable, it would
also be possible to try all k! orderings, stopping each try once
the intermediate storage needs become too large). It should

also be noted that FROG provides the same reduced MLN re-
gardless of the order it processes literals, assuming it does not
run out of space during intermediate calculations.

Finally, one should note that as FROG operates, the same
reduced clause can appear many times. For example, assume
FROG is given p(x, y) → q(y), where p is in the evidence
and q is the query. Imagine that p is only true for: p(1, 2),
p(2, 2), p(3, 2), and p(1, 3). After processing p, FROG will
have these grounded clauses: {q(2)}, {q(2)}, {q(2)}, and
{q(3)}. FROG groups such duplicates into one grounded
clause, and assigns such groups the sum of the weight of each
grounded clause. In this example, instead of needing to keep
four grounded clauses, FROG needs to only have two in the
reduced MLN it produces.

Theorem: Given a MLN M , a set of evidence literals E, a
set of query literals Q, and a set of hidden literals H , the algo-
rithm FROG(M, E, Q, H) produces a reduced MLN MLNR.
Exact inference on MLNR only involves literals in Q and H
and always produces the same results as exact inference on
the original MLN M

Proof Sketch: The first part of the theorem follows from
the definition of the reduced network , which involves only
the query and hidden literals. The second part of the theo-
rem can be proved by considering the explanation provided in
Section 2 where the counts for M can be split into two parts:
one containing the counts due to the evidence literal and the
other the counts due the the query and hidden literals . Since
the evidence-literal counts is constant for all the groundings,
they can be cancelled out, yielding only the query and hidden
literal counts. This corresponds to computing the probabili-
ties in MLNR. Hence exact inference in MLNR yields same
result as exact inference in M .

4 Experiments
We evaluate our algorithm on three well-known, real-world
datasets: Citeseer [Lawrence et al., 1999], CORA [Bilenko
and Mooney, 2003], and UW-CSE [Poon and Domingos,
2007]. The two citation domains involve information extrac-
tion, while the UW-CSE domain involves link prediction. The
Citeseer and Cora datasets contain information about 1, 593
and 1, 285 citations, respectively and involve thousands of
logical-inference rules (8, 334 and 2, 087) and many facts
(102, 475 and 168, 462). Both of these datasets involve the
same two query literals: whether or not two citations refer to
the same paper (SameBib) and whether a particular paper is
in a particular field (InF ield).

The other testbed we use is the UW-CSE domain, where
the goal is to predict the AdvisedBy relationship between a
professor and a student. This database consists of 278 faculty
members and students, 94 clauses and 2, 008 facts. We only
used the 27 rules that contain AdvisedBy since the others
have no impact when all other literals are in the evidence.

We compare our FROG algorithm against the total number
of grounded clauses. In all three domains, we vary the to-
tal number of objects in the domain, following methodology
previously used [Poon et al., 2008].

The results on UW-CSE appear in Figure 1. In order to
understand them, we will first discuss the results on the full

Figure 1: Results in the UW-CSE Domain

dataset (far right of the curves). The total number of possi-
ble groundings on the full data set is 1.1 × 109, while that
of FROG’s reduced MLN is 2.2 × 107, a 50-fold reduction.
However, these numbers are skewed by the presence of one
challenging clause, AdvisedBy(s, p) ∧ AdvisedBy(s, q)
→ SamePerson(p, q). Since the single evidence literal in
this clause is unnegated, FROG can do little to reduce its
number of groundings, as discussed earlier. Discarding this
clause, the number of possible groundings is only reduced by
2.2×107 and remains 1.1×109, but the reduced MLN FROG
produces only contains 6.6×105 clauses, a 1,700-fold reduc-
tion. FROG, which is written in Java, takes about 4.2 seconds
on the full dataset for reduction on a 3 GHz Windows XP ma-
chine. The four combinations, with and without FROG and
with (labeled MLNHARD) and without this hard clause, are
the four curves in Figure 1. Note that the two fully grounded
networks are same irrespective of whether or not the the hard
clause is present.

Figure 2: Results in the CORA Domain

The results in the CORA domain and the Citeseer domain
are presented in Figures 2 and 3. In both the domains,
FROG yields significant savings when compared to the fully
grounded network. On the full CORA testbed, FROG reduces
the number of groundings by a factor over 107, from 5×1013

to 2× 106. Similarly, in the full Citeseer task, FROG reduces
the network size by a factor of 5 × 106, from 1.7 × 1013 to
3.0× 106. In both the domains, FROG yields a million times

fewer groundings. FROG spends 1, 350 seconds to process
CORA and 5, 150 seconds on Citeseer, which is less than 700
milliseconds per clause.

When using the full Citeseer dataset, there are 1.7 × 1013

possible groundings. However, FROG only needs to consider
2.0×106 of these groundings (about 1 in 10 million) in order
to determine that 3.0x106 groundings remain. For Cora these
numbers are 4.8 × 1013 possible, 2.3 × 106 considered, and
2.1×106 remaining, while for UW-CSE they are 1.1×109 pos-
sible, 6.6×105 considered, and 2.2×107 remaining (without
the one challenging clause mentioned above, only 6.6 × 105

groundings remain). These numbers show that FROG can
greatly reduce the size of a grounded network while only con-
sidering a small fraction of the complete set of groundings, as
FROG exploits the fact that to satisfy a clause, one needs to
find only one literal with the proper truth value.

Figure 3: Results in the Citeseer Domain

5 Related Work and Conclusion
We have presented an algorithm, FROG, for preprocessing the
groundings in MLNs and demonstrated success on three real-
world datasets from the literature. FROG creates grounded
MLNs that are equivalent to the original MLNs, but often or-
ders of magnitude smaller. In order to create such reduced
networks, FROG need only consider a small fraction of all
the possible groundings. The key aspect it exploits is that the
grounded clausal form of logical sentences only require one
literal to have the proper truth value, and whenever the evi-
dence contains such literals, FROG can count large blocks of
groundings in one fell swoop. Earlier we discussed lazy in-
ference and lifted inference, both of which are closely related
and complementary to FROG. Before concluding, we discuss
additional related work.

Recently Milch et al. [2008] explored the idea of counting
formulas to accelerate inference in relational models. They
extend an earlier method of lifted inference [Braz et al., 2005]
by extending the notion of parameterized factors (parfactors)
with counting formulas. Another way to accelerate inference
is by converting to arithmetic circuits [Chavira et al., 2004].
Sen et al. [2008] propose another ”clustered” inference ap-
proach that exploits the shared correlation in probabilistic
databases by creating a new graph, which is then compressed.
Our method has similarities to lifted inference in that it clus-

ters the groundings together. FROG groups together in one,
potentially huge, group all those groundings where the evi-
dence satisfies a given clause, regardless of the state of the
query and hidden variables.

One future area of research is to investigate the combi-
nation of lifted inference with our preprocessing algorithm.
Lifted-inference methods might find additional clusters in
FROG’s reduced networks. A reduced MLN produced by
FROG can answer a larger number of subsequent queries
without any additional calculation, but another future re-
search direction is to extend FROG to the case where evidence
is allowed to change. Ideally FROG would perform an incre-
mental amount of additional work when only a small portion
of the evidence changes. Another possible research problem
is to develop more efficient heuristics for choosing which lit-
eral FROG should process next; the order literals FROG re-
duces literals greatly impacts the number of groundings it
considered. Finally, FROG does not yet exploit during its re-
duction phase commonality across clauses, many of which
are likely to share multiple literals.

Acknowledgements The authors gratefully acknowledge sup-
port of the Defense Advanced Research Projects Agency under
DARPA grants FA8650-06-C-7606 and HR0011-07-C-0060. Views
and conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies, ei-
ther expressed or implied of the US government or of DARPA.

References
[Bilenko and Mooney, 2003] M. Bilenko and R. Mooney. Adaptive

duplicate detection using learnable string similarity measures. In
KDD, 2003.

[Braz et al., 2005] R. De Salvo Braz, E. Amir, and D. Roth. Lifted
first-order probabilistic inference. In IJCAI, 2005.

[Chavira et al., 2004] M. Chavira, A. Darwiche, and M. Jaeger.
Compiling Relational Bayesian networks for exact inference. In-
ternational Journal of Approximate Reasoning, 42:49–56, 2004.

[Domingos and Lowd, 2009] P. Domingos and D. Lowd. Markov
Logic: An Interface Layer for AI. Morgan and Claypool, 2009.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar. Introduction to
Statistical Relational Learning. MIT Press, 2007.

[Lawrence et al., 1999] S. Lawrence, C. Giles, and K. Bollacker.
Autonomous citation matching. In ICAA, 1999.

[Milch and Russell, 2006] B. Milch and S. Russell. General-
purpose MCMC inference over relational structures. In UAI,
2006.

[Milch et al., 2008] B. Milch, L. Zettlemoyer, K. Kersting,
M. Haimes, and L. Kaelbling. Lifted probabilistic inference with
counting formulas. In AAAI, 2008.

[Poon and Domingos, 2007] H. Poon and P. Domingos. Joint infer-
ence in information extraction. In AAAI, 2007.

[Poon et al., 2008] H. Poon, P. Domingos, and M.Sumner. A gen-
eral method for reducing the complexity of relational inference
and its application to MCMC. In AAAI, 2008.

[Russell and Norvig, 2003] S. Russell and P. Norvig. Artificial In-
telligence - A Modern Approach. Prentice Hall, 2003.

[Sen et al., 2008] P. Sen, A. Deshpande, and L. Getoor. Exploiting
shared correlations in probabilistic databases. In VLDB, 2008.

[Singla and Domingos, 2008] P. Singla and P. Domingos. Lifted
first-order belief propagation. In AAAI, 2008.

