
1

Few-Shot Induction of Generalized Logical
Concepts via Human Guidance
Mayukh Das 1,∗, Nandini Ramanan 2, Janardhan Rao Doppa 3 and Sriraam
Natarajan 2

1Samsung R&D Institute India - Bangalore, Device Intelligence, Bangalore , India
2The University of Texas at Dallas, ECS, Dallas , Texas, USA
3Washington State University, EECS, Pullman, Washington, USA
Correspondence*:
Mayukh Das
mayukh.das@samsung.com

ABSTRACT2

We consider the problem of learning generalized first-order representations of concepts from a3
small number of examples. We augment an inductive logic programming learner with two novel4
contributions. First, we define a distance measure between candidate concept representations5
that improves the efficiency of search for target concept and generalization. Second, we leverage6
richer human inputs in the form of advice to improve the sample-efficiency of learning. We prove7
that the proposed distance measure is semantically valid and use that to derive a PAC bound.8
Our experiments on diverse learning tasks demonstrate both the effectiveness and efficiency of9
our approach.10

1 INTRODUCTION
We study the case of learning from few examples, of which one-shot learning is a special case (Lake et al.,11
2015). We consider a challenging setting – that of learning explainable, decomposable and generalizable12
(first-order) concepts from few examples. Plan induction becomes a special case where a generalizable13
plan is induced from a single (noise-free) demonstration. As an example, consider building a tower that14
requires learning L-shapes as a primitive. In our formulation, the goal is to learn a L-shape from a single15
demonstration. Subsequently, using this concept, the agent can learn to build a rectangular base (with 216
L-shapes) from another single demonstration and so on till the tower is fully built. Concept learning has17
been considered as problem solving by reflection (Stroulia and Goel, 1994), mechanical compositional18
concepts (Wilson and Latombe, 1994), learning probabilistic programs (Lake et al., 2015), etc. While19
successful, they are not considered in one-shot learning except with SVM (Tax, 2001), or with a neural20
network (Kozerawski and Turk, 2018).21

Our work has two key differences. First, we aim to learn an ‘easily interpretable’, ‘explainable’,22
‘decomposable’ and ‘generalizable’ concepts as first-order Horn clauses Horn (1951) (which are akin to23
If-Then rules). Second, and perhaps most important, we ‘do not assume the existence of a simulator (for24
plans) or employ a closed-world assumption’ to generate negative examples. Inspired by Mitchell’s[1997]25
observation of futility of bias-free learning, we employ domain expertise as inductive bias. The principle26
of structural risk minimization Vapnik (1999) shows how optimal generalization from extremely sparse27
observations is quite hard. The problem is harder in structured domains since most relations are false.28
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Thus, few-shot induction of generalized logical concepts is challenging. We employ iterative revision of29
first-order horn clause theories using a novel scoring metric and guidance from a human. We emulate a30

‘student’ who learns a generalized concept from an example provided by the ‘teacher’, by both reflecting as31
well as, asking relevant questions.32

We propose Guided One-shot Concept Induction (GOCI) for learning in relational domains1. GOCI builds33
upon an inductive logic program (ILP) learner Muggleton (1991) with two key extensions. First, a modified34
scoring function that explicitly computes distances between concept representations. We show the relation35
to Normalized Compression Distance (NCD) for plan induction settings. Consequently, we demonstrate36
that NCD is a valid distance metric. Second, we use domain knowledge from human expert as inductive37
bias. Unlike many advice taking systems that employ domain knowledge before training, GOCI identifies38
the relevant regions of the concept representation space and actively solicits guidance from the human39
expert to find the target concept in a sample-efficient manner. Overall, these two modifications allow for40
more effective and efficient learning using GOCI that we demonstrate both theoretically and empirically.41

We make the following key contributions:42

1. We derive a new distance-penalized scoring function that computes definitional distances between43
concepts, henceforth termed as ‘conceptual distance’.44

2. We treat the human-advice as an inductive bias to accelerate learning. Our ILP learner actively solicits45
richer information from the human experts than mere labels.46

3. Our theoretical analyses of GOCI prove that (a) our metric is indeed a valid distance,(b) NCD between47
plans is a special case of our metric48

4. We show a PAC analysis of the learning algorithm based on Kolmogorov complexity.49

5. We demonstrate the exponential gains in both sample efficiency and effectiveness of GOCI on diverse50
concept induction tasks with one or a few examples.51

2 BACKGROUND AND RELATED WORK
Our approach to Concept Learning is closely related to Stroulia and Goel (1994)’s work which learns52
logical problem-solving concepts by reflection. GOCI’s scoring metric is more general and applicable to53
both concepts and plans and can be used for learning from a few examples. While we use discrete spatial54
structures as motivating examples, GOCI is not limited to discrete spaces, similar to Wilson’s Wilson and55
Latombe (1994) work. GOCI is also related in spirit to probabilistic (Bayesian) program induction for56
learning decomposable visual concepts Lake et al. (2015) which illustrates how exploiting decomposability57
is more effective. Our approach leverages not only decomposability but implicit relational structure as well.58

One/few-Shot Learning and theory induction:59

Our problem setting differs from the above in that it requires learning from sparse examples (possibly one).60
Lake et al., (Lake et al., 2015) propose a one-shot version of Bayesian program induction of visual concepts.61
There is also substantial work on one/few-shot learning (both deep and shallow) in a traditional classification62
setting (Bart and Ullman, 2005; Vinyals et al., 2016; Wang et al., 2018), most of which either pre-train63
with gold-standard support example set or sample synthetic observations. We make no such assumptions64
about synthetic examples. ILP (Muggleton, 1991) inductively learns a logical program (first-order theory)65
that covers most of the positive examples and few of the negative examples by effectively employing66
background knowledge as search bias. In concept learning, generalization is typically performed as a search67
through space of candidate inductive hypotheses by (1) structuring, (2) searching and (3) constraining the68

1 Our algorithm can learn from one(few) example(s). We specify the number of examples in our evaluations.
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space of theories. FOIL (Quinlan, 1990) is an early non-interactive learner with the disadvantage that it69
occasionally prunes some uncovered hypotheses. This is alleviated in systems like FOCL by introducing70
language-bias in form of user-defined constraints (Pazzani, 1992). With Interactive ILP, learner could pose71
questions and elicit expert advice which allows pruning large parts of search space (Sammut and Banerji,72
1986; Rouveirol, 1992). To incorporate new incoming information, ILP systems with theory revision,73
incrementally refine and correct the induced theory (MUGGLETON, 1988; Sammut and Banerji, 1986).74
While GOCI is conceptually similar to ALEPH (Srinivasan, 2007), it learns from a few examples and75
actively acquires domain knowledge by interacting with human expert incrementally.76

77
Knowledge-Guided Learning:78

Background knowledge in ILP is primarily used as search bias. Although the earliest form of knowledge79
injection can be found in explanation-based approaches (Shavlik and Towell, 1989), our work relates80
to preference-elicitation framework (Braziunas and Boutilier, 2006) which guides learning via human81
preferences as an inductive bias. Augmented learning with domain knowledge as an inductive bias has82
long been explored across various modeling formalisms, including traditional machine learning (Fung83
et al., 2003), probabilistic logic (Odom et al., 2015) and planning (Das et al., 2018). Our human-guided84
GOCI learner aims to extend these directions in the context of learning generalizable complex concepts85
from a few examples(including plans). Similar problem setting of concept learning from incomplete/sparse86
observations has also been explored in the cognitive science paradigm via explanation based inductive87
program synthesis (Kitzelmann and Schmid, 2006; Flener, 1997).88

The idea of augmented learning with human guidance/knowledge has also been extensively studied in89
the context of evolutionary computation. Interactive Evolutionary systems (Eiben and Smith, 2015) use90
expert guidance to emulate a holistic fitness function that would otherwise depend on a very restricted pre-91
defined fitness model. The potential richness of such knowledge can be leveraged in not just evolutionary92
parent selection but can also optimize other parameters that leads to faster convergence, especially in93
mutations (Wendt et al., 2010). ILP has been shown to be conceptually similar to mutative EA in the94
context of program induction (Wong and Leung, 1997) and hence knowledge guided mutations are related95
to knowledge augmented search in ILP. Thus, in our problem setting, the interaction module that seeks96
human guidance to select the most useful constraints (detailed in section 3.2.3) is similar in spirit to97
interactive (knowledge guided) evolutionary mutation process. However, our underlying search strategy98
and optimization is based on ILP.99

3 GUIDED ONE-SHOT CONCEPT INDUCTION
We are inspired by a teacher (human) and student (machine) setting in which a small number of100
demonstrations are used to learn generalized concepts (Chick, 2007). Intuitively, the description provided101
by a human teacher tends to be modular (can have distinct logical partitions), structured (entities and102
relations between them), and in terms of known concepts. Hence, a vectorized representation of examples103
is insufficient. We choose a logical representation, specifically a ‘function-free restricted form of first-order104
logic (FOL)’ that models structured spaces faithfully.105

Given: A set of “facts” or assertions, i.e. a set of ground literals (or trajectories) describing 1 (or few)
instance(s) of an unknown concept, availability of an expert to provide guidance and a knowledge-base
of known concepts
To Do: Learning a representation, by inducing a first-order logic program, of the given concept that
optimally generalizes the given instance(s) effectively

106
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Figure 1. Highlevel overview of our GOCI framework.

The input to GOCI is the description of the instances(s) of a concept that the human teacher provides. An107
example is, thus, conjunction of a set of ground literals (assertions). The output of GOCI is a least general108
generalization (LGG) horn clause from the input example(s).109

3.1 Concept Representation110

Consider the following example input to the GOCI framework. The input here is an instance of the111
structural concept L (illustrated in Figure 2),112

EXAMPLE 1. An instance in a minecraft domain, can be a L with dimensions height = 5, base = 4113
(Figure 2). L(S), Height(S, 5), Base(S, 4), s is the concept identifier and may be described as conjunction114
of ground literals,115
Row(A)∧ Tower(B)∧ Width(A, 4)∧ Height(S, 5)∧ Base(S, 4)∧ Contains(S, A)∧ Contains(S, B)∧116
Height(B, 4)∧ SpRel(B, A,′ NWTop′);117
which denotes L as composition of a ‘Row’ of w = 4 and a ‘Tower’ of h = 4 with appropriate literals118
describing the scenario (Figure 2 left). As a special case, under partial or total ordering assumptions119
among the ground literals, an input instance can represent a plan demonstration.120

We aim to learn the optimally generalized (decomposable) representation of the concept (L in the context121
of the aforementioned example) referred by the one/few instances that were passed to GOCI as input.122
Before further discussion on the learning such a generalized (decomposable) representation let us first123
define formally what a concept representation signifies in our setting.124

DEFINITION 1. Concepts in GOCI are represented as horn clause theories. A theory T is defined as,125
T = C(sk . . .) : −

∨[
∧Ni=1fi(t1, . . . , tj)

]
, where the body ∧Ni=1fi(t1, . . . , tj) is a conjunction of literals126

indicating known concepts or relationships among them, such that any tj ∈ V ∪ {sk} ∪ C where V is the127
set of all logical variables in the clause, C is the set of constants in the domain of any logical variable.128
The head C(sk . . .) identifies a target concept, and the terms {sk} are logical variables that denote the129
parameters of the concept assuming there are k = {1, . . . , K} parameters including the identifier to the130
given instance of the concept. Since a concept can be described in multiple ways (Figure 2), the final131
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Figure 2. Concept L (base = 4, height = 5), described as composition of a Tower and a Row

theory will be a disjunction over clause bodies with the same head. A (partial) instantiation of a theory T132
is denoted as T/θ.133

Note that these definitions allow for the reuse of concepts, potentially in a hierarchical fashion. We134
believe that this is crucial in achieving human-agent collaboration.135

EXAMPLE 2. Figure 2 illustrates an instance of the concept L that can be described in multiple ways. A136
possible one is,137

L(s) : −[Height(s, hs), Base(s, ws), Contains(s, a),Contains(s, b), Row(a), Tower(b),

Width(a, wa), Height(b, hb), Equal(ws, wa),Sub(hb, hs, 1), SpRel(b, a, “NWTop”)]∨
[Height(s, hs), Base(s, ws), Contains(s, a),Contains(s, b), Row(a), Tower(b),

Width(a, wa), Height(b, hb), Equal(hs, hb),Sub(wa, ws, 1), SpRel(b, s, “W”)]

The generalization must be noted. The last argument of the SpRel() is a constant, as only this particular138
spatial alignment is appropriate for the concept of the L structure. Although the input is a single instance139
(Example 1), GOCI should learn a generalized representation such as Example 2. Another interesting140
aspect are the additional constraints: Equal(X,Y) and Sub(X,Y,N). While such predicates are a part of141
the language, they are not typically described directly in the input examples. However, they are key to142
generalization, since they express complex interactions between numerical (or non-numerical) parameters.143
Also note that the head predicate of the clause could have been designed differently as per Definition 1.144
For instance in case of Example 2 the head predicate could have folded in the dimensional parameters145
- L(s, hs, ws). However, the number of such dimensional parameters can vary across different concepts.146
Hence to maintain generality of representation format during implementation we push the dimensional147
parameters of the learnable concept into the body of the clause.148

A specific case of our concept learning (horn clause induction) framework could be plan induction from149
sparse demonstrations. This can be achieved by specifying time as the last argument of both the state and150
action predicates. Following this definition, we can allow for plan induction as shown in our experiments.151
Our novel conceptual distance is clearer and more intuitive in the case of plans as can be seen later.152
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DEFINITION 2 (Decomposable:). A concept C is Decomposable iff it is expressed as a conjunction of153
other concepts, and one or more additional literals to model the interactions. C ⇐ (

∧
i C′i) ∧ (

∧
j Bj).154

Here C′i are literals that represent other concepts that are already present in the knowledge base of the155
learner and Bj are literals that, either describe the attributes of C′i or interactions between them.156

Decomposable allows for an unknown concept to be constructed as a composition of other known157
concepts. GOCI learns the class of decomposable concepts since it is intuitive for the “human teacher” to158
describe. Decomposable concepts faithfully capture the modular and structured aspect of how humans159
would understand and describe instances. It also allows for a hierarchical construction of plans.160

EXAMPLE 3. Following the Minecraft structure described in 2, note how L is described with161
already known concepts C′1 = Row() and C′2 = Tower() and the other literals such as162
Height(b, hb), SpRel(b, a, ”NWTop”), . . . ∈ {Bj}, i.e. they describe the parameters of the known163
concepts or interactions between them. Note that, known concepts in the knowledge base could have164
been manually coded in by experts or learned previously and are essentially represented in the same way.165
For instance Row() can be encoded as recursive the clause program representing a composition of one166
block and one unit shorter row,167

Row(r) : −[Width(r, wr), Block(a), Row(b),Width(b, wb), SpRel(a, b, ”East”), Sub(wb, wr, 1)]∨
[Width(r, wr), Equal(wr, 1), Block(a)]

Tower() could also be defined in the knowledge base in the same way. When the optimally general168
representation of the concept L is learned that is persisted in the knowledge base as well, such that more169
complex concepts can be represented by decomposing into L and other known concepts.170

An obvious question that arises here is why {Bj} * {C′}? i.e. why can the other literals not be treated171
similarly as a part of the knowledge base of known concepts? Ideally, that would be correct. However, that172
will also cause infinite levels of concept definitions which cannot be implemented in practice. Additionally,173
following the paradigm of a student-teacher scenario, it can always be assumed that the student a has prior174
understanding of many concepts from outside the current system. Thus we can safely assume, without loss175
of generality, that set of literals {Bj} are implicitly understood and defined as a part of the framework176
itself. This argument applies to the semantics of the ’constraint predicates’ (described later) as well.177

Finally, before we discuss the details of the learning methodology let us briefly look into a motivating,178
and presently relevant, real-world scenario that represents our problem setting.179

EXAMPLE 4. Consider a Decision Support AI system for resource planning and management in hospitals180
as illustrated in Figure 3. The AI agent forecasts the need for increased resources in the Infectious Diseases181
(ID) ward, given the early signs of an outbreak of some disease such as Covid-19 or Ebola etc. and a182
potential spike in ID ward admissions. However, as noted by the administrators and/or physicians there183
isn’t enough budget to procure additional resources for ID ward. But the problem is quite critical and184
needs to be solved. So the human teacher (administrators in this case) teaches the AI agent the concept of185

“Divert”-ing resources from Cancer ward since cancer ward admissions are usually stable and does not186
have spikes. The AI agent is hence expected to learn a generalized representation of the concept of divert187
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Figure 3. A motivating real-world scenario for concept induction. The concept learnt by the AI agent is
“Divert()”

such that it may be applied later for other wards or for other tasks and furthermore in a “decomposable”188
fashion. For instance, “Divert” may be learned as a clause program such as,189

Divert(R, qtyR) : −To(R, Locdest), AcquireFrom(R, Loc1source, qty1, ),

AcquireFrom(R, Loc2source, qty2), AssignTo(R, Locdest, qtydest),

sum(qty1, qty2, qtydest)

Obviously the above representation assumes that concepts such as “AcquireFrom()” are known concepts,190
either implicitly defined inside the learning framework or its explicit representation has been learned and191
persisted inside the knowledge base in the past.192

The above example is solely to motivate the potential impact of our problem setting and the proposed193
solution. For an explanation of different components and aspects of GOCI we refer to the much simpler194
and unambiguous structural example outlines earlier (L).195
3.2 Methodology196

3.2.1 Search197

ILP systems perform a greedy search through the space of possible theories. Space is typically defined,198
declaratively, by a set of mode definitions Muggleton (1995) that guide the search. We start with the most199
specific clause (known as a bottom clause) (Srinivasan, 2007) from the ground assertions and successively200
add/modify literals that might improve a rule that best explains the domain. Typically, the best theory201
is the one that covers the most positive and least negative examples. Thus, it optimizes the likelihood202
of a theory T based on the data. We start with a bottom clause and variablize the statements via anti-203
substitution. Variabilization of T is denoted by θ−1 = {a/x} where a ∈ consts(T ), x /∈ vars(T ). That204
is, anti-substitution θ−1, is a mapping from occurrences of ground terms in T to new or existing logical205
variables.206

Evaluation Score: We redesign the ILP scoring (e.g., ALEPH’s compression heuristics) as:207
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• The user-provided advice forces the learner to learn longer theory, hence the search space can be208
exponentially large. Thus, modes alone are not sufficient as the search bias.209

• There is only one (a few) positive training example(s) to learn from and many possible rules can210
accurately match the training example. Coverage based scores fail.211

Most learners optimize some form of likelihood. For a candidate theory T , likelihood given data D is,212
LL(T ) = logP (D|T ) (i.e., coverage). To elaborate further, in most classification tasks in discrete domains213
(with categorical/ordinal feature and target variables), goodness of fit of candidate models is achieved via214
the measure of how well the candidate models explain (or cover) the given data i.e. a good model is the one215
that will predict positive class for maximum possible positive examples and for minimum possible negative216
examples. This measure is expressed as likelihood of the data given a candidate model. In GOCI, we have217
one (at most few) positive example(s). Coverage will not suffice. Hence, we define a modified objective as218
follows.219

T ∗ = arg min
T∈τ

(−LL(T ) +D(T/θX , X)) (1)

where T ∗ is the optimal theory, τ is the set of all candidate theories, and D is the conceptual distance220
between the instantiated candidate theory T/θX and the original example X . Recall that a theory T is a221
disjunction of horn clause bodies (or conjunction of clauses).222

223
3.2.2 Distance metric224

Conceptual distance, D(T/θX , X)), is a penalty in our objective. The key idea is that any learned225
first-order horn clause theory must recover the given instance by equivalent substitution. However, syntactic226
measures, such as edit distance, are not sufficient since changing even a single literal, especially, literals227
that indicate inter-concept relations, could potentially result in a completely different concept. For instance,228
in blocks-world, the difference between a block being in the middle of a row and one at the end of the row229
can be encoded by changing one literal. Hence, a more sophisticated semantic distance such as conceptual230
distance is necessary Friend et al. (2018). However, such distances require deeper understanding of the231
domain and its structure.232

Our solution is to employ inter-plan distances. Recall that the concepts GOCI can induce are233
decomposable and, hence, are equivalent to parameterized planning tasks. One of our key contributions234
is to exploit this equivalence by using a domain-independent planner to find grounded plans for both235
the theory learned at a particular iteration i, Ti and the instance given as input, X . We then compute the236
Normalized Compression Distance (NCD) between the plans.237

NCD: Goldman & Kuter Goldman and Kuter (2015) proved that NCD is arguably the most robust inter-plan238
distance metric. NCD is a reasonable approximation of Normalized Information Distance, which is not239
computable Vitányi et al. (2009). Let the plans for Ti/θX and X be πT and πX . To obtain NCD, we execute240
string compression (lossy or lossless) on each of the plans as well as the concatenation of the two plans to241
recover the compressed strings CT , CX , and CT,X respectively. NCD between the plans can be computed242
as,243

NCD(πT , πX) =
CT,X −min(CT , CX)

max(CT , CX)
(2)
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The conceptual distance between a theory T and X is the NCD between the respective plans,244
D(T/θX , X) = NCD(πT , πX). This entire computation is performed by the Conceptual distance245
calculator as shown in Figure 1.246

Observations (1) Conceptual distance as a penalty term in the LL score ensures that the learned theory247
will correctly recover the given example/demonstration. (2) D(T/θX , X) generalizes to the Kolmogorov-248
Smirnov statistic between two target distributions if we induce probabilistic logic theories. We prove these249
insights theoretically.250

251
3.2.3 Human Guidance:252

The search space in ILP is provably infinite. Typically language-bias (modes) and model assumptions253
(closed world) are used to prune the search space. However, it is still intractable with one (or few) examples.254
So, we employ human expert guidance as constraints that can directly refine an induced theory, acting as a255
strong inductive bias. Also, we are learning decomposable concepts (see Def. 2). This allows us to exploit256
another interesting property. Constraints can now be applied over the attributes of the known concepts257
that compose the target concept, or over the relations between them. Thus, GOCI directly includes such258
constraints in the clauses as literals (see Ex. 2). Though such constraint literals come from the pre-declared259
language, they are not directly observed in the input example(s). So an ILP learner will fail to include such260
literals.261

If the human inputs (constraints) are provided upfront before learning, it can be wasteful/irrelevant. More262
importantly, it places an additional burden on the human. To alleviate this, our framework explicitly queries263
for human advice on the relevant constraint literals, which are most useful. Let U be a predefined library of264
constraint predicates in the language, and let U() ∈ U be a relevant constraint literal. Human advice A265
can be viewed as a preference over the set of relevant constraints {U()}. If UA denotes the preferred set266
of constraints, then we denote the theory having a preferred constraint literal in the body of a clause as267
τA. (For instance, as per Example 2 GOCI queries ‘which of the two sampled constraints Sub(hb, hs, 1)268
& Greater(hb, hs) is more useful’. Human could prefer Sub(hb, hs, 1), since it subsumes the other.) The269
scoring function now becomes:270

T ∗ = arg min
T∈τ

(−LL(T ) +D(T/θX , X)) : τ ⊆ {τA} (3)

Thus, we are optimizing the constrained form of the same objective as Equation 1 which aims to prune the271
search space. This is inspired by advice elicitation approaches Odom et al. (2015). While our framework272
can incorporate different forms of advice, we focus on preference over constraints on the logical variables.273
The formal algorithm, described next, illustrates how we achieve this via an iterative greedy refinement274
(Figure 1, query-advice loop shown in left).275
3.3 The GOCI Algorithm276

Algorithm 1 outlines the GOCI framework. It initializes a theory T0, by variablizing the ‘bottom clause’277
obtained from X and background knowledge [lines 3 & 5]. Then it performs a standard ILP search278
(described earlier) to propose a candidate theory [line 6]. This is followed by the guided refinement279
steps, where constraint literals are sampled (parameter tying guides the sampling) and the human teacher is280
queried for preference over them, such that the candidate theory can be modified using preferred constraints281
[lines 7-9]. The function NCD() performs the computation of the conceptual distance, by first grounding282
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Algorithm 1 Guided One-shot Concept Induction
1: procedure GOCI(Instance X)
2: Initialize: Set Iteration `← 1
3: Initialize: Bootstrap theory T0 ← X/θ−1

4: repeat
5: Use T`−1 as initial model
6: Candidate theory T` ← SEARCH(T ∈ τ |T`−1)
7: Sample applicable constraints U ∈ U
8: UA ← QUERY(human,U)
9: T ′ ← T` ⊕ UA . ∀ UA ∈ A

10: D`(T
′/θX , X)← NCD(πT ′/θX , πX)

11: Score S` ← (−LL(T ′) +D(T ′/θX , X))
12: if S` < S`−1 then . minimize
13: Retain T ′: Update T` = T ′

14: end if
15: until ` ≤ L OR T` = T`−1
16: end procedure

Figure 4. Difference in evaluation of a concept instance across different learning paradigms

the current modified candidate theory T ′ with the same parameter values as the input example X , then283
generating grounded plans and finally calculating the normalized compression distance between the plan284
strings (as shown in Figure 1 and Equation 2) [line 10]. The distance-penalized negative log-likelihood285
score is estimated and minimized to find the best theory at the current iteration [lines 11-14], which is286
then used as the initial model in the next iteration. This process is repeated either until convergence (no287
change in induced theory) or maximum iteration bound (L).288

Connection to plan induction: Evaluation, both in traditional ML and ILP, generally predicts the value289
of ŷX for a test instance X represented as a fixed (ML) or arbitrary (ILP) length feature vector. In GOCI,290
however, the notion of evaluation of an instance X depends on successful construction of a valid/correct291
plan πX (Figure 4). Thus while learning, most research aim to maximize coverage of positive instances E+292
(maxP (ŷx = true|yx ∈ E+)) and minimize coverage of negatives E−, (i.e. minP (ŷx = true|yx ∈ E−)).293
GOCI evaluates a candidate concept representation by allowing the agent to realize that concept - by294
computing a valid plan for the goal/task implied by the instance x. This is akin to plan induction, since we295
are learning parameterized plan for realizing the concept as a surrogate for the concept itself. Additionally,296
planning has long been shown to be conceptually same as logic programming (Preiss and Shai, 1989)297
and hence induction of logic programs (theories) is the same as plan induction where the examples are298
trajectories (plan traces) in this case.299

300
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3.4 Theoretical analysis301

3.4.1 Validity of Distance Metric302

NCD δ(x, y) between 2 strings x and y is provably a valid distance metric Vitányi et al. (2009) -303

δ(x, y) = maxK(x|y),K(y|x)
maxK(x),K(y) , where K(x) is the Kolmogorov complexity of a string x and K(x|y) is the304

conditional Kolmogorov complexity of x given another string y. NCD is a computable approximation of305
the same [D(x, y) ≈ δ(x, y)]. Thus, we just verify if δ is a correct conceptual distance measure. Let TY and306
TZ be 2 theories, with same parameterizations (i.e., same heads). Let TY /θ and TZ/θ be their groundings307
with identical parameter values θ. Our learned theories are equivalent to planning tasks. Assuming access to308
a planner Π() which returns Y = Π(TY /θ) and Z = Π(TZ/θ), the two plan strings w.r.t the instantiations309
of concepts represented by TY and TZ respectively.310

PROPOSITION 1 (Valid Conceptual Distance). Normalized information distance δ(Y, Z) is a valid and311
sound conceptual distance measure between TY and TZ , i.e., δ(Y, Z) = 0 iff the concepts represented by312
TY and TZ are equivalent.313

PROOF SKETCH FOR PROPOSITION 1. Let TY and TZ be 2 induced consistent first-order Horn clause314
theories, that may or may not represent the same concept. Let θ be some substitution. Now let TY /θ315
and TZ/θ be the grounded theories under the same substitution. This is valid since we are learning horn316
clause theories with the same head, that indicates the target concept being learned. As explained in the317
manuscript a theory is equivalent to a planning task. We assume access to a planner Π(), we get plan strings318
Y = Π(TY /θ) and Z = Π(TZ/θ) with respect to the planing tasks TY /θ and TZ/θ.319

Friend et al.,(2018) proved that Conceptual Distance is the step distance between 2 consistent theories in320
a cluster network (T,�,∼), where T is the class of consistent theories,� is the definitional equivalence321
relation (equivalence over bidirectional concept extensions) and ∼ implies symmetry relation. We have322
shown in the paper that, given the class of concepts we focus on, a concept is a planning task.323

Let there be a theory T ∗, which represents the optimal generalization of a concept C. If step distance324
〈TY , T ∗〉 = 0 in a cluster network and 〈TZ , T ∗〉 = 0 then 〈TY , TZ〉 = 0, i.e. they represent the same325
concept C and they are definitionally equivalent TY � TZ . Thus both TY /θ and TZ/θ will generate the326
same set of plans as T ∗, since they will denote the same planning tasks (By structural induction). Thus,327

TY � TZ ⇐⇒ [Π(Y ) ∩ Π(Z) = Π(Y ) = Π(Z)] (4)

upto equivalence of partial ordering in planning. let π∗() be a minimum length plan in a set of plans328
Π(). Let y and z be strings indicating plans π∗(Y ) and π∗(z) ignoring partial order. If Π(Y ) = Π(Z) then329
π∗(Y ) = π∗(z). Hence, the conditional Kolmogorov complexities K(y|z) and K(z|y) will both be set to330
0, if the strings x and y are equivalent (ignoring partial ordering). This is based on the principle that if they331
are equivalent, then a Universal prefix-Turing machine will recover one string given the other in 0 steps.332

∴
max (K(y|z), K(z|y))

max (K(y), K(z))
= 0 = δ(Y, Z)

PROPOSITION 2 (Generalization to Kolmogorov-Smirnov). In generalized probabilistic logic, following333
Vitányi Vitányi (2013), δ(Y, Z) corresponds to two-sample Kolmogorov-Smirnov statistic between334
two random variables TY /θ and TZ/θ with distributions PTY and PTZ respectively [v(TY , TZ) =335
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supθ∈F
∣∣FTY (θ)− FTZ (θ)

∣∣], where FT () is the cumulative distribution function for PT and supθ∈F is the336
supremum operator. In a deterministic setting, δ is a special case of the Kolmogorov-Smirnov statistic v,337
δ(Y, Z) � v(FTY , FTZ ).338

PROOF SKETCH FOR PROPOSITION 2. This can be proved by considering the connection between339
NID and the distributions induced by the concept classes we are learning. NID is defined as δ(x, y) =340
maxK(x|y),K(y|x)
maxK(x),K(y) , where, K(a|b) is the conditional Kolmogorov complexity of a string a, given b. There341

is no provable equivalence between Kolmogorov complexity and traditional notions of probability342
distributions.343

However, if we consider a reference universal semi-computable semi-probability mass function m(x),344
then there is a provable equivalence − logm(x) = K(x)±O(1). Similarly for conditional Kolmogorov345
complexity, by Conditional Coding Theorem, − logm(y|x) = K(y|x) ± O(1) Vitányi (2013). By346
definition,347

m(y|x) =
∑
j≥1

2−K(j)−cjPj(y|x)

where cj > 0 are constants and Pj(y|x) is the lower semi-computable conditional. A lower semi-348
computable semi-probability conditional mass function is based on the string generating complexity of a349
universal prefix Turing machine. Thus m(y|x) is greater than all the lower semi-computable. Note that our350
compressed plans are equivalent to a string generated by Universal Turing Machines. The conditional case351
implies, if a compressed plan string x is given as an auxiliary prefix tape, how complex it is to generate352
compressed string y = θ.353

Given 2 grounded theories TY /θ and TZ/θ, let PTY /θ, PTX/θ be the respective distributions when354
learning probabilistic logic rules. Now let us define the semantics of a distribution PT/θ in our case: PT/θ =355
P (π(T/θ)), i.e. distribution over the plan strings, which can be considered as lower semi-computable356
probability based on coding theory. We know,357

∑
j≥1

2−K(j)−cjPj(y) ≈ F (y|x) (5)

where F (y) is the cumulative distribution. So, NID δ(Y, Z) now becomes, δ(Y, Z) = max(K(y|z),K(z|y))
max(K(y),K(z))358

We know that max (K(y), K(z)) is a normalizer. Thus, δ(Y, Z) < max (K(y|z), K(z|y))359
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max (K(y|z), K(z|y)) = max (−logm(y|z),−logm(z|y))

= max

(
−logm(y, z)

m(z)
,−logm(y, z)

m(y)

)
= max ([− logm(y, z) + logm(z)] , [− logm(y, z) + logm(y)])

Under partial ordering max yields supremum

≈ sup |logm(y)− logm(z)|
≈ sup |logF (y)− logF (z)|
≈ sup |F (y)− F (z)| log is monotonic

Significance of Propositions 1 & 2: Proposition 1 outlines how our proposed NCD-based metric is a valid360
conceptual distance. It is well understood that the true measure of conceptual distance is not straightforward361
and is subject to the semantic interpretation of the domain itself. But designing a unique distance metric362
based on the semantics of every domain limits the generality of any learning system. So NCD acts as a363
surrogate ‘conceptual distance’. It is based on the notion that “if two concepts are fundamentally same the364
complexity of optimal action plans to realize the concepts should also be fundamentally same”. NCD (or365
NID) essentially measures the difference in generative complexities of two plans. Also note that other types366
of distances that are limited to a syntactic level such as edit distance (or literal distance) will fail to capture367
the similarity or diversity between concept representations since the same concept can be represented with368
more than one theories which may vary in one or more literals.369

Proposition 2 on the other hand, proves that our proposed metric is not limited to our specific scenario.370
It positions our work in the context of known statistical distance metrics and establishes its credibility371
as a valid solution. It proves how in a non-deterministic setting, i.e. probabilistic logic formulation, our372
proposed metric generalizes to Kolmogorov-Smirnov statistic.373

3.4.2 PAC Learnability374

PAC analysis of GOCI follows from GOLEM for function-free horn clause induction Muggleton and375
Feng (1990). Let initial hypothesis space beH0 and the final beH∗ (s.t.T ∗ ∈ H∗).376

PROPOSITION 3 (Sample complexity). Following Valiant Valiant (1984) and Mooney Mooney (1994),377
with probability (1− δ), the sample complexity of inducing the optimal theory T ∗ is:378

n∗ = O
(

1

ε

[
dLji ln((tfm)) + ln(

1

δ
)

])
(6)

where ε is the regret, n∗ - sample complexity ofH∗, i is the maximum depth of a variable in a clause and &379
j is the maximum arity. m - number of distinct predicates, t is the number of terms, p is the place and d is380
the distance of the current revision from the last known consistent theory, and L is the upper bound on the381
number of refinement steps (iterations).382

PROOF SKETCH FOR PROPOSITION 3. In our learning setting the learned theory will always have non-383
zero uncertainty. To understand the properties, we build upon the PAC analysis for recursive rlgg (Relative384
Least General Generalization) approach for function-free Horn clause learning shown by Muggleton &385
Feng (1990) in GOELM. With some restrictions, it applies here as well. Let, n: denote the sample size and386
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H: the hypothesis space. Our approach can be considered as an rlgg approach with refinement steps. Note387
that constraint predicates that refine the clauses are not part of K.388

To begin with, we are interested in regret bounds for the initially learned hypothesis by the ILP learner389
H0, before refinement. We know from Valiant (1984), that with probability (1− δ) the sample complexity390
n forH0 is,391

n ≥ 1

ε

(
ln(|H0|) + ln(

1

δ
)

)
(7)

where ε is the regret. Now, our ILP learner induces ij-Determinate clauses Muggleton and Feng (1990),392
where i is the maximum depth of the clause and j is the maximum arity. In our problem setting it can be393

proven that |H0| = O((tpm)j
i
), where m is the number of distinct predicates in the language. t is the394

number of terms, and p is the place (for details about place refer Muggleton and Feng (1990)). Also note395
that, (if j & i is bounded : then ji ≤ c). Mooney (1994) shows that for theory refinement/revision sample396
complexity is expressed as ,397

n∗ = O
(

1

ε

[
dk ln (|H0|+ d+m) + ln(

1

δ
)

])
(8)

where distance d to be the number of single literal changes in a single refinement step and k is the number398
of refinement/revision iterations. In Algorithm 1, we observe that at each iteration ` ≤ L, updates are w.r.t.399

the preferred constraint predicates UA ∈ U. Thus we know that k = L. Substituting |H0| = (tfm)j
i

and400

ji = c constant)in Equation 8 and ignoring the additive terms d+m since (tfm)j
i
>> d+m, we get,401

n = O
(

1

ε

[
dLc ln(tpm) + ln(

1

δ
)

])
(9)

PROPOSITION 4 (Refinement distance). d is upper bounded by the expected number of literals that402
can be constructed out of the library of constraint predicates with human advice E∼A [|U|] and lower403
bounded by the conceptual distance between theory learned at two consecutive iterations since we adopt404
a greedy approach. If PrA(U) denotes the probability of a constraint predicate being preferred then,405

|D` −D`−1| ≤ d ≤
∑2(|U|−1)×tPq

i=1 PrA(Ui) where 2(|U|−1) × tPq is the maximum possible number of406
constraint literals and q is the maximum arity of the constraints. In case of only pairwise constraints q =2.407

PROOF SKETCH FOR PROPOSITION 4. The proof is straightforward and hence we present it in brief.408
In our setting to show that,409

|D` −D`−1| ≤ d ≤
2(|U|−1)×tPq∑

i=1

PA(Ui) (10)

(where 2(|U|−1) × tPq is the maximum number of constraint literals possible, since U is the library of410
constraint predicates) consider that the number of constraint predicates that can be picked up at any411
iteration is 2(|U|−1). To form constraint literals we need to tie arguments to existing logical variables in412
the current theory. We have defined t to be the number of terms in the existing theory. Let q be the max413
arity of a constraint thus total possible number of constraint literals are 2(|U|−1) × tPq. So if the distribution414

induced on the constraint literals by human advice A be PA, then
∑2(|U|−1)×tPq

i=1 PA(Ui) is the expected415
number of literals added given the advice. Now this is the upper bound of d. Again d should at least be the416
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conceptual distance between the new theory after constraint addition and the last consistent theory. Note d417
and conceptual distance D is not the same. Thus it is the difference between the NCD of last theory to418
original example and current updated theory to the original example |D` −D`−1|.419

Observe that, if at each layer ` ≤ L we add constraint predicates U` then at layer `, d =
∣∣{U}`∣∣ ≤ 2mtPq420

(assuming q is maximum arity of the constraint predicates). Also, as per our greedy refinement framework,421
at each layer `, distance new theory T` should at least be the change in conceptual distance.422

Significance of Propositions 3 & 4: Propositions 3 & 4 aim to illustrate what the general sample423
complexity would be for a theory refinement based RLGG clause learner such as GOCI and how the424
conceptual distance controls the complexity by establishing bounds on the refinement distance. Furthermore425
the complexity is also subject to the maximum refinement iterations, which in turn is affected by human426
guidance. Thus we establish the theoretical connection between the two dimensions of the contribution of427
this work.428

PROPOSITION 5 (Advice complexity). From Equations 6 and 8, at convergence ` = L, we get n
∗−|X|
L429

examples, on an average, for a concept C to be PAC learnable using GOCI.430

The proof is quite straightforward and hence we just discuss the brief idea behind it. Our input is sparse431
(one or few instances). GOCI elicits advice over constraints to acquire additional information. Let |X| be432
the number of input examples. We query the human once at each layer and hence the maximum query433
budget is L. Given that the sample size is |X|, each query to the human must acquire information about at434

least n
∗−|X|
L examples, on an average, for our a concept C to be PAC learnable using our approach.435

4 EVALUATION
We next aim to answer the following questions explicitly:436

(Q1) Is GOCI effective in ‘one-shot’ concept induction?437

(Q2) How sample efficient is GOCI compared to baselines?438

(Q3) What is the relative contribution of the novel scoring function vs. human guidance towards439
performance?440

Our framework extends a Java version of Aleph Srinivasan (2007). We modified the scoring function with441
NCD penalty computed via a customized SHOP2 planner Nau et al. (2003). We added constraint sampling442
and human guidance elicitation iteratively (Algorithm 1).443

4.1 Experimental Design444

We compare GOCI with Aleph with no enhancements. We focus on the specific task of “one-shot concept445
induction”, with a single input example for each of the several types of concepts and report aggregated446
precision. We consider precision because preference queries are meant to eliminate false positives in our447
case. To demonstrate general robustness of GOCI, beyond one-shot case, we experimented with varying448
sample sizes for each concept type and show learning curves for the same. We perform an ablation study449
to show the relative contribution of two important components of GOCI: (a) novel scoring metric and (b)450
human guidance; i.e., we compare against two more baselines (ILP+Score and ILP+Guidance). For every451
domain, we consider ten different types of concepts (ten targets) and aggregate results over five runs.452

Note that human guidance was obtained from distinct human experts for every run. The expertise level of453
all the advice providers was reasonably at par since they were chosen from the same pool of candidates with454
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Domain Approach Avg. Precision #Queries

Minecraft GOCI 0.85 5.5± 3
ILP 0.35 -

Assembly GOCI 0.65 16.5± 4
ILP 0.2 -

ChEBI GOCI 0.615 13.1± 2.13
ILP 0.45 -

Barman GOCI 0.7 10.5± 5.4
ILP 0.51 -

Table 1. Results for one-shot concept learning.

zero visibility and knowledge of our proposed framework. However, for all the human advice providers455
we assumed a basic level of knowledge in geometry or fundamentals of logic and reasoning. Additionally,456
we also explained each of the experimental domains to the human participants to create a similar level of457
awareness about the domains among all of them.458

Domains We employ 4 domains with varying complexity. Note that we have selected the below domains459
based on multiple considerations. The domain encoding need to be such that target concepts can be learned460
in a modular fashion (i.e. decomposable). Thus the first two domains are structure construction domains461
either spatial (Minecraft) or chemical/molecular (CheBI). Spatial structures are implicitly modular (such as462
the L-structure in Figure 2). Chemical entities, molecules/compounds/complexes are similarly modular as463
well. The last two domains are fundamentally planning domains. However, they are also compositional464
in nature i.e. any planning goal is a composition task. For instance, machine structure in ‘Assembly’465
domain and cocktails etc. ‘Barman’ domain. So these two domains do not just demonstrate learning466
modular/decomposable concepts but they also illustrate the plan induction feature of GOCI.467

1. Minecraft (Spatial Structures): The goal is to learn discrete spatial concepts in a customized Narayan-468
Chen et al. (2019) Project Malmo platform for Minecraft. Dialogue data in Malmo is available online,469
and we converted them into a logical representation. All structures are in terms of discrete atomic unit470
blocks (cubes). Figure 5 shows examples of some spatial structures that GOCI was able to learn.471

2. Chemical Entities of Biological Interest (ChEBI): ChEBI Degtyarenko et al. (2007) is a compound472
database containing important structural features and activity-based information, for classification of473
chemicals, such as - (1) Molecular structure, (2) Biological role etc. We model the Benzene molecule474
prediction task as molecular-compositional concepts. The data has predicates such as SingleBond,475
DoubleBond, HasAtom etc.476

3. Assembly (planning domain): Assembly is a planning domain, where different mechanical structure477
concepts are compositions of different parts and resources. Input is a conjunction of ground literals478
indicating ground plan demonstration (assuming total ordering).479

4. Barman (planning domain): A standard planning domain where a bartender is supposed to follow480
certain recipes and sequence of techniques to create cocktails. The different cocktails are decomposable481
concepts in this setting.482

4.2 Experimental Results483

[Effective One-shot (Q1)] Table 1 shows the performance of GOCI on one-shot concept learning tasks484
as compared to standard ILP. GOCI significantly outperforms ILP across all domains answering (Q1)485
affirmatively. Also, note that GOCI is very ‘query’ efficient as observed from the small average number486
of queries posed in the case of each domain. Note that in the case of CheBI, the number of queries is the487
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Figure 5. Instances of spatial concepts in Minecraft. (Left) Upright Tee, (Middle) Upright L, (Right)
Orthogonal overlapping Ls

Figure 6. Learning curves for varying sample size to compare the sample-efficiency of GOCI and ILP. Top
2 plots are with respect to structural composition domains-Minecraft & ChEBI and the bottom 2 are for
planning domains Assembly & Barman (best viewed in color).

highest among all the domains. This can be attributed to that fact that CheBI is a domain which requires488
a certain degree of understanding of fundamental chemistry (chemical bonds and their types, molecules,489
atoms etc.). Thus some of the human participants required more iterations (consequently more queries) to490
converge to the most relevant set of constraint literals, given the difference of their prior understanding of491
school chemistry.492
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Figure 7. Results of ablation study on Minecraft domain. Relative contribution of our distance-penalized
score vs. human guidance.

Query efficiency is an important consideration in any learning paradigm that leverages human guidance,493
since controlling the cognitive load on the human expert is critical. So, in general, the observed average494
query numbers being reasonably low across all domains corroborates our theoretical advice complexity495
(Section 3.4.2).496

[Sample Efficiency (Q2)] In figure 6, we observe that GOCI converges within significantly smaller sample497
size across all domains, thus, supporting our theoretical claims in Section 3.4. In ChEBI, though, quality of498
planner encoding might explain mildly lower-precision yet GOCI does perform significantly better than499
vanilla ILP learner. In ChEBI, we see that the sample efficiency is not vastly distinct. One of the possible500
reasons could be the sub-optimal encoding of the planning domain language, which is necessary for NCD501
computation, for this task. If we can improve the planner setup for this domain then we will likely be able502
to observe enhanced performance.503

[Relative contribution (Q3)] Figure 7 validates our intuition that both components (scoring function and504
human-guidance) together make GOCI a robust one-shot (sample-efficient) concept induction framework.505
Though human guidance, alone, is able to enhance the performance of a vanilla ILP learner in sparse506
samples, yet it is not sufficient for optimal performance. In contrast, although the advantage of our novel507
distance-penalized scoring metric is marginal in sparse samples, it is essential for optimal performance at508
convergence.509

510

4.3 Discussion511

The most important conclusion from the experiments is that when available, the guidance along with the512
novel score leads to a jump-start, better slope and in some cases, asymptotically sample efficient with a513
fraction of the number of instances needed than merely learning from data.514

Another important aspect to note here is that our experimental setup did not attempt to ensure in any515
way that the quality of guidance provided by the human participants is optimal. The formulation of the516
objective function, itself, in GOCI is designed to handle sub-optimal human advice implicitly, in a seamless517
manner. The two primary features in the design that make GOCI robust to advice quality are as follows,518
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1. As explained earlier and shown in Equation 3, human advice and conceptual distance deals with two519
distinct aspects of the search process. Human advice controls the size and nature of the search space520
while conceptual distance ensures the quality of the candidates. Advice and distance have a balancing521
effect on each other and thus, it is our novel conceptual distance that makes GOCI robust to bad advice.522

2. Also, the nature of human advice in our setting is of choosing the most useful set of ‘constraint523
predicates’ among the set of candidate constraints. Now the candidates are generated by GOCI in a524
conservative fashion selecting only the ones that are logically valid for the theory learned at the current525
iteration of revision. Thus human experts have very little option of choosing an invalid or extremely526
unlikely constraint predicate.527

Our ablation study in Figure 7 also supports our analysis. On closer inspection, we see that it is due to our528
novel distance penalized scoring function (ILP+Score) that ensures convergence to an optimal solution.529
Human advice (ILP+Guidance) contributes to sample efficiency.530

5 CONCLUSIONS
We developed a human-in-the-loop one-shot concept learning framework in which the agent learns a531
generalized representation of a concept as FOL rules, from a single (few) positive example(s). We make532
two specific contributions – deriving a new distance measure between concepts and allowing for richer533
human inputs than mere labels, solicited actively by the agent. Our theoretical and experimental analyses534
show the promise of GOCI method. An exhaustive evaluation involving richer human inputs including535
varying levels of expertise and analyzing our claim that learning performance of GOCI is robust to expertise536
levels (which should only affect query efficiency) is an immediate future research objective. Integration537
with hierarchy learning also remains an interesting direction for future research.538
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