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Abstract

While Generative Adversarial Networks (GANs) have accel-
erated the use of generative modelling within the machine
learning community, most of the adaptations of GANs are
restricted to images. The use of GANs to generate clinical
data has been rare due to the inability of GANs to faithfully
capture the intrinsic relationships between features given a
small amount of observational data. We hypothesize and ver-
ify that this challenge can be mitigated by incorporating rich
domain knowledge in the form of expert advice in the gener-
ative process. Specifically, we propose human-allied GANs
that uses correlation advice from humans to create synthetic
clinical data. We construct a system that takes a symbolic rep-
resentation of the expert advice and converts it into constraints
on correlation of the features during the generative process.
Our empirical evaluation demonstrates (a) the superiority of
our approach over other GAN models, (b) the importance
of incorporating advice over instance noise and (c) an initial
framework for incorporation of privacy in our model while
capturing the relationships between features.

1 Introduction
Deep learning models have reshaped the machine learning
landscape over the past decade (LeCun, Bengio, and Hinton
2015; Goodfellow, Bengio, and Courville 2016). Specifically,
Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014) have found tremendous success in generating ex-
amples for images (Mao et al. 2017; Liu and Tuzel 2016;
Radford, Metz, and Chintala 2016), photographs of hu-
man faces (Karras, Laine, and Aila 2019; Antipov, Bac-
couche, and Dugelay 2017; Wang et al. 2018b), image to
image translation (Zhu et al. 2017; Li et al. 2018; Liu,
Breuel, and Kautz 2017) and 3D object generation (Wang
et al. 2018a; Paganini, de Oliveira, and Nachman 2018;
Wu et al. 2016) to name a few. Despite their successes,
their adaptation to wider range of tasks is limited due
to, (a) data hungry nature of such methods, (b) potential
privacy violation in generated data (Huang et al. 2018;
Huang et al. 2017) and (c) finally, their restricted usage,
mainly in the context of images. Consequently, their adapta-
tions in clinical domains are restricted to images. However,
recently, synthetic data generation has become a centerpiece
of AI research in medicine due to the difficulties in collection,
persistence, sharing and analysis of real clinical data.

We aim to address the above limitations. Inspired by
Mitchell’s argument of “The Need for Biases in Learning
Generalizations” (Mitchell 1980), we mitigate the challenges
of existing data hungry methods via inductive bias while
learning GANs. Our primary contribution is demon-
strating that effective inductive bias can be provided by
humans in the form of domain knowledge (Towell and
Shavlik 1994; Kunapuli et al. 2013; Odom et al. 2015;
Fung, Mangasarian, and Shavlik 2003). Rich human knowl-
edge can effectively balance the impact of quality (sparsity)
of training data. Note that data quality also contributes to, the
well studied, modal instability of GANs. This problem is es-
pecially critical in domains such as medical/clinical analytics
that does not typically exhibit ‘spatial homophily’ (Habeeb
et al. 2017), unlike images, and are prone to distributional
diversity among feature clusters as well. Our human-guided
framework proposes a robust strategy to address this chal-
lenge. Note that a key assumption is that in our setting the
human is an ally and not an adversary.

The second limitation of privacy is crucial for medical
data generation. Access to existing medical databases (Di-
nov 2016) is difficult if not impossible due to the cost and
privacy concerns. Hence, synthetic data generation holds
tremendous promise for advancing the adaptation of AI
techniques inside medicine (Guibas, Virdi, and Li 2017;
Mahmood, Chen, and Durr 2018; Frid-Adar et al. 2018;
Buczak, Babin, and Moniz 2010). While previous meth-
ods generated synthetic images, we go beyond images and
generate clinical data, specifically lab test values. Building
on this, we present a synthetic data generation framework that
effectively exploits domain expertise to handle data quality.

We make a few key contributions: (1) We demonstrate
how effective human knowledge (advice) can be provided
to a GAN as an inductive bias. Specifically, we develop a
symbolic knowledge representation that makes it easy for
the domain expert to provide the relevant advice. (2) We
present a method for generating data given this advice. (3)
We outline a privacy preserving method for data generation.
(4) Finally, we demonstrate the effectiveness and efficacy of
our approach on 4 de-identified clinical data sets and 2 private
clinical data sets. Our method is generalizable to multiple
modalities of data and is not necessarily restricted to images.
An important feature of this approach is that training occurs
from very few data samples (< 50 in one domain) thus



providing human guidance as a data generation alternative.

2 Background
The key principle behind GANs (Goodfellow et al. 2014) is
a zero-sum game (Kuhn and Tucker 1953) from game theory,
a mathematical representation where each participant’s gain
or loss is exactly balanced by the losses or gains of the other
participants and is generally solved by a minimax algorithm.
The generator distribution pdata(x) over the given data x
is learned by sampling z from a random distribution pz(z).
Initially uniform distribution was proposed but Gaussians
have been proven to be superior (Arjovsky and Bottou 2017).
While GANs are arguably a powerful framework for estimat-
ing generative distributions, convergence dynamics of naive
mini-max algorithm has been shown to be unstable. Some re-
cent approaches, among many others, augment learning either
via statistical relationships between true and learned genera-
tive distributions such as Wasserstein-1 distance (Arjovsky,
Chintala, and Bottou 2017), MMD (Li, Swersky, and Zemel
2015) or via spectral normalization of the parameter space of
the generator (Miyato et al. 2018) which controls the genera-
tor distribution from drifting too far. While successful, these
approaches still require significant volume of data and are typ-
ically focused on images. While some GAN architectures do
exists that are specifically for tabular data (Choi et al. 2017;
Xu et al. 2019; Baowaly et al. 2019) generating clinical data
still remains an open problem.

Guidance via human knowledge is a provably effective way
to control learning in presence of systematic noise (which
leads to instability). One typical strategy to incorporate such
guidance is by providing rules that cover examples and/or
features. Some of the earliest approaches are explanation-
based learning (EBL-NN, (Shavlik and Towell 1989)) or
ANNs augmented with symbolic rules (KBANN, (Towell
and Shavlik 1994)). Various widely-studied techniques of
leveraging domain knowledge for optimal model general-
ization include polyhedral constraints in case of knowledge-
based SVMs, (Cortes and Vapnik 1995; Schölkopf et al. 1998;
Le, Smola, and Gärtner 2006; Fung, Mangasarian, and Shav-
lik 2003)), preferences rules (Braziunas and Boutilier 2006;
Kunapuli et al. 2013; Odom et al. 2015) or qualitative con-
straints (ex: monotonicities / synergies (Yang and Natarajan
2013) or quantitative relationships (Ganchev et al. 2010)).
While these models exhibit considerable improvement with
the incorporation of human knowledge, there is only limited
use of such knowledge in training GANs. Our approach
resembles the qualitative constraints framework in spirit.

While widely successful in building optimally general-
ized models in presence of systematic noise (or sample bi-
ases), knowledge-based approaches have mostly been ex-
plored mainly in the context of discriminative modeling. In
the generative setting, a recent work extends the principle
of posterior regularization from Bayesian modeling to deep
generative models in order to incorporate structured domain
knowledge (Hu et al. 2018). Traditionally, knowledge based
generative learning has been studied as a part of learning
probabilistic graphical models with structure/parameter pri-
ors (Mansinghka et al. 2006). We aim to extend the use of

Figure 1: Human-Allied GAN. Correlation advice takes generated
distribution closer to the real distribution.

domain knowledge to the generative model setting by directly
using them in the construction of GANs.

3 Human-Allied GANs
A notable disadvantage of adversarial training formulation
is that the training is slow and unstable, leading to mode
collapse (Arjovsky and Bottou 2017) where the generator
starts generating data of only a single modality. This has
resulted in GANs not being exploited to their full potential
in generating synthetic non-image clinical data. Human
advice can encourage exploration in diverse areas of the
feature space and helps learn more stable models (Odom
and Natarajan 2018). Hence, we propose a human-allied
GAN architecture (HA-GAN) (figure 1). The architecture
incorporates human advice in form of feature correlations.
Such intrinsic relationships between the features are both
important and readily available in clinical data and thus
become a natural candidate as additional knowledge/advice
in guided model learning for faithful data generation.

Our approach builds upon a GAN architecture (Goodfel-
low et al. 2014) where a random noise vector is provided to
the generator which aims to generate examples as close to the
real distribution as possible. The discriminator’s goal is to
distinguish between real examples and ones generated by the
generator. The generator aims to maximize the probability
that the discriminator makes a mistake and the discriminator
tries to minimize its mistakes thereby resulting in a min-max
optimization problem which can be solved by a mini-max
algorithm. We adopt the Wasserstein GAN (WGAN) archi-
tecture1 (Arjovsky, Chintala, and Bottou 2017; Gulrajani
et al. 2017) that focuses on defining a distance/divergence
(Wasserstein or earth movers distance) to measure the close-
ness between the real distribution and the model distribution.

3.1 Human Knowledge as Inductive Bias
Historically, two approaches have been studied for using
guidance as bias. The first is to provide advice on the la-
bels as constraints or preferences that controls the search
space. Some example advice rules on the labels include: (3

1For brevity, we use ‘GAN’ to indicate ‘W-GAN’



≤ feature1 ≤ 5)⇒ label = 1 and (0.6 ≤ feature2 ≤ 0.8) ∧ (4
≤ feature3 ≤ 5)⇒ label = 0. While such advice is relevant
in a discriminative setting, they are not ideal for GANs. Since
GANs are shown to be sensitive to the training data and here
the labels are getting generated, they should not be altered
during training.

The second approach, which we take, is to specify cor-
relations between features as preferences. This allows for
faithful representation of the hidden relationships between
features.
Example: Consider predicting heart attack with 3 features
- cholesterol, blood pressure (BP) and income. The values
of the given features can vary (sometimes widely) between
different patients due to several latent factors (ex, smoking,
education etc.). It is difficult to assume any specific distri-
bution. In other words, it is difficult to infer the distribution
from which the values for the features are drawn (though the
feature values in the data might appear similar).
We modify the correlation coefficients (for both +ve and -
ve correlations) between the features by increasing them if
the human advice (knowledge) suggests that two features
are highly correlated and decrease them if advice suggests
otherwise.

Advice representation: Inspired from first order condi-
tional influence (FOCI) statements (Natarajan et al. 2008)
that specify probabilistic influences among different features,
we allow advice in the form of simple qualitative influences.
A qualitative influence (QI) is of the form f1 Qinf f2, where
f1 and f2 are features in the data, and shows a direct depen-
dence of f2 on the influencing feature f1. Our model can
handle 3 types of QIs:

1. f1M
+f2 captures the positive monotonic relationship be-

tween the features.
2. f1M

−f2 captures the negative monotonic relationship be-
tween the features.

3. f1Q
+ f2 and f1Q

− f2 capture the more general case of
+ve and −ve linear correlations between features respec-
tively and is the focus of this work.
Note that the first 2 type of QIs can be captured by rank

correlation and the 3rd type of QI can be captured by the
Pearson correlation coefficient. Thus, all the three types of
advice can be naturally incorporated in our model. It must be
mentioned that FOCI statements employed predicate logic
notations for learning statistical relational models. For the
purposes of this work, we restrict ourselves to propositional
representation of the knowledge but note that this can serve
as a foundation for learning relational versions of GANs.

Advice injection: After every fixed number of iterations,
N, we calculate the correlation matrix of the generated data
G1 and provide a set of advice ψ on the correlations between
different features. Consider the following motivating exam-
ple for the use of correlations as a form of advice.
Example: Continuing the above example, since rise in the
cholesterol level can lead to rise in BP and vice versa, expert
advice here can suggest that cholesterol and BP are highly
correlated. Also, as income may not contribute directly to
BP and cholesterol levels, another advice here can be to de-
correlate cholesterol/BP and income level.

The example advice rules are: 1. Correlation(“cholesterol
level”,“BP”)↑, 2. Correlation(“cholesterol level”,“income
level”)↓ and 3. Correlation(“BP”,“income level”)↓, where ↑
and ↓ indicate increase and decrease respectively.

These advice in form of QIs can be written as:
1. cholesterol level Q+ BP

2. cholesterol level Q− income level, and
3. BP Q− income level

Based on the first advice, the correlation coefficient between
cholesterol level and BP needs to be increased. Then

C =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
A =

[
1 λ 1
λ 1 1
1 1 1

]
(1)

Here C is the correlation matrix,A is the advice matrix and λ
is the factor by which the correlation value is to be augmented.
In the cases where there is a need to increase the value of the
correlation coefficient, λ should be> 1. We set λ = 1

max(|C|) .
Since -1.0 ≤ ∀c ∈ C ≤ 1.0, in this case, the value of λ ≥ 1.0,
leading to enhanced correlation via Hadamard product. Thus
the new correlation matrix Ĉ is,

Ĉ = C � A =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
�

 1 1
0.3 1

1
0.3 1 1
1 1 1


=

[
1 0.667 0.3

0.667 1 0.07
0.3 0.07 1

] (2)

If the advice says that features have low correlations (2nd rule
in example), we decrease the correlation coefficient. Now, λ
must be< 1 and we set λ = max(|C|). Since -1≤ ∀c ∈ C ≤
1.0, the value of λ ≤ 1.0. Thus multiplying by λwill decrease
the correlation value, and the new correlation matrix is,

Ĉ1 = Ĉ � A =

[
1 0.667 0.3

0.667 1 0.07
0.3 0.07 1

]
�

[
1 1 0.3
1 1 0.3
0.3 0.3 1

]

=

[
1 0.667 0.09

0.667 1 0.021
0.09 0.021 1

]
(3)

This is used to create the new generated data G̃1. For negative
correlations, the process is unchanged.

To capture bad advice, we set the desired correlation be-
tween highly correlated features to 0 and the correlation
between non correlated features or low correlated features is
set to either 1 or -1. Given the initial correlation matrix C,

C =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
(4)

suppose the advice says that we need to increase the corre-
lation coefficient between feature 1 and feature 2. Then the
new correlation matrix after bad advice can be calculated as:

C =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
A =

[
1 λ 1
λ 1 1
1 1 1

]
(5)



Ĉ = C � A =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
�

[
1 λ 1
λ 1 1
1 1 1

]
(6)

where λ is the factor by which the correlation value is to be
augmented. Since the advice asks to increase the correlation,
we set λ=0. Thus,

Ĉ =

[
1 0.2 0.3
0.2 1 0.07
0.3 0.07 1

]
�

[
1 0 1
0 1 1
1 1 1

]
=

[
1 0.0 0.3
0.0 1 0.07
0.3 0.07 1

]
(7)

Similarly, if the advice says that we need to decrease the
correlation coefficient between feature 1 and feature 3, we
set λ = 1

featval
.

Ĉ1 =

[
1 0.0 0.3
0.0 1 0.07
0.3 0.07 1

]
�

 1 0.2 1
0.3

0.2 1 1
1
0.3 1 1


=

[
1 0.0 1.0
0.0 1 0.07
1.0 0.07 1

] (8)

3.2 Advice-Guided Data Generation
After Ĉ1 is constructed, we next generate data satisfying the
constraints. To this effect, we employ the Iman-Conover
method (Iman and Conover 1982), a distribution free method
to define dependencies between distributional variables based
on rank correlations such as Spearman or Kendell Tau corre-
lations. We also tried the Ruscio-Kaczetow iteration (Ruscio
and Kaczetow 2008) but it identifies the intermediate cor-
relation matrix through an iterative, trial-and-error process
and thus the results were not very encouraging. Thus, we
made a focused choice to use Iman-Conover method which
is a more principled approach. Since we deal with linear
relationships between the features and assume a normal dis-
tribution and that Pearson coefficient has shown to perform
equally well with the Iman-Conover method (Naveršnik and
Rojnik 2012) due to the close relationship between Pearson
and Spearman correlations, we use the Pearson correlations.
Further, we assume that the features are Gaussian, justified
by the fact that most clinical/lab/imaging data is continuous.
The Iman-Conover method consists of the following steps:

[Step 1]: Create a random standardized matrixM with
values x ∈ M ∼ Gaussian distribution. This is obtained
by the process of inverse transform sampling described
next. Let V1 be a uniformly distributed random variable
and CDF be the cumulative distribution function. For a
sampled point v, CDF(v) = P(V ≤ v). Thus, to generate
samples, the values v ∼ V are passed through CDF−1 to
obtain the desired values x [CDF−1(v) = {x|CDF(x) ≤
v, v ∈ [0, 1]}]. Thus for Gaussian,

CDF(x) = 1√
2π

∫ x

−∞
exp

−x2

2 dx =
1√
2π

∫ x

0

exp
−x2

2 dx

= [− exp(
−x2

2
)]x0

(9)

The inverse CDF can be thus written as

CDF−1(v) = 1− exp(
−x2

2
) ≤ v (10)

and the desired values x ∈M can be obtained as
x =

√
2ln(1− v) (11)

[Step 2]: Calculate the correlation matrix E ofM.
[Step 3]: Calculate the Cholesky decomposition F of the
correlation matrix E . Cholesky decomposition (Scheuer
and Stoller 1962) of a positive-definite matrix is the prod-
uct of a lower triangular matrix and its conjugate transpose.
Note that for Cholesky decomposition to be unique, the
target matrix should be positive definite, (such as the co-
variance matrix) whereas the correlation matrix, used in
our algorithm, is only positive semi-definite.
We enforce positive-definiteness by repeated addition of
very small values to the diagonal of the correlation matrix
until positive-definiteness is ensured. Given a symmetric
and positive definite matrix E , its Cholesky decomposition
F is such that E = F · F>.
[Step 4]: Calculate the Cholesky decomposition Q of the
correlation matrix obtained after modifications based on
human advice, Ĉ. As above the Cholesky decomposition
is such that Ĉ = Q · Q>.
[Step 5]: Calculate the reference matrix T by transform-
ing the sampled matrixM from step 1 to have the desired
correlations of Ĉ, by using their Cholesky decompositions.
[Step 6]: Rearrange values in columns of the generated
data G1 to have the same ordering as corrresponding col-
umn in reference matrix T to obtain the final generated
data G̃1.

Cholesky decomposition to model correlations: Given
an randomly generated data set with no correlations P , a
correlation matrix C and its Cholesky decomposition Q, data
that faithfully follows the given correlations ∈ C can be
generated by the product of the obtained lower triangular
matrix with the original uncorrelated data i.e. P̂=QP . The
correlation of the newly obtained data, P̂ is,

Corr(P̂) = Cov(P̂)
σP̂

=
E[P̂P̂>]−E[P̂]E[P̂]>

σP̂
(12)

Since we consider data P̂ from a Gaussian distribution with
zero mean and unit variance,

Corr(P̂) = E[P̂P̂>]−E[P̂]E[P̂]>

σP̂

= E[P̂P̂>] = E[(QP)(QP)>]
= E[QPQ>P>] = QE[PP>]Q> = QQ> = C

(13)
Thus Cholesky decomposition can capture the desired corre-
lations faithfully and can be used for generating correlated
data. Since we already have a normal sampled matrixM and
a calculated correlation E ofM, we only need to calculate a
reference matrix (step 5).



Algorithm 1 HA-GAN: Human-Allied Generative
Adversarial Networks

1: procedure HA-GAN(Data G, Generator G, Discriminator D,
Correlation Advice ψ)

2: for epochs k=1 to K do
3: Sample Zm, m examples from noise vector Z
4: Sample Xm, m examples from real data X
5: G1=G(Zm) . generate data from noise using generator
6: if k mod N is 0 then . number of epochs 1 ≤ N ≤ K
7: G̃1 = IMAN-CONOVER(G1,ψ)
8: ŷ = D(Xm, G̃1) . pass generated data after advice

to discriminator; backpropagate error
9: else

10: ŷ = D(Xm,G1) . backpropagate error; no advice
11: end if
12: end for
13: end procedure

14: procedure IMAN-CONOVER(Generated data G1, Correlation
Advice ψ)

15: C = CALCCORR(G1) . calculate correlation matrix
16: λinc= 1

max(C) . calculate correlation increasing factor
17: λdec= max(C) . calculate correlation decreasing factor
18: A=CREATEADVICEMAT(ψ)
19: Ĉ = C � A . λ ∈ A.
20: for t epochs do
21: M = INVSAMP(m, d) . m: #examples, d:#features
22: E = M

>·M
m

. correlation matrix ofM
23: calculate F s.t. E=F · F> . Cholesky decomp of E
24: calculateQ s.t. Ĉ=Q · Q> . Cholesky decomp of Ĉ
25: calculate T =MF−1Q . reference matrix with

desired correlations
26: R = RANK(T )
27: G̃1 = REORDER(R,G1)
28: end for
29: return G̃1
30: end procedure

31: procedure INVSAMP(number of sampled examples m, number
of features in data d)

32: a=generate m random numbers
33: p = QUALTILEFUNCTION(a) . induce Gaussian dist
34: p̂ = NORMALISE(p)
35: M = PERMUTE(p̂) . shuffle the sampled numbers
36: end procedure

3.3 Human-Allied GAN Training

Since the human expert advice is provided independent of
the GAN architecture, our method is agnostic of the under-
lying GAN architecture. We make use of Wasserstein GAN
(WGAN) architecture since its shown to be more stable while
training and can handle mode collapse (Arjovsky, Chintala,
and Bottou 2017). Only the error backpropagation values
differ when we are using the data generated by the underlying
GAN or the data generated by the Iman-Conover method. Al-
gorithm 1 shows the overall process of Human-Allied GANs.
Our algorithm starts with the general process of training a
GAN where the generator takes random noise as an input
and generates data which is then passed, along with the real
data, to the discriminator. The discriminator tries to identify

the real and generated data and the error is back propagated
to the generator. After every specified number of iterations,
the correlations between features C in the generated data is
obtained and a new correlation matrix Ĉ, is obtained with
respect to the expert advice. A new data set is generated wrt
Ĉ using the Iman-Conover method and then passed to the
discriminator along with the real data set.

3.4 Introducing Privacy in HA-GAN
Ensuring differential privacy when trying to capture the hid-
den relationships such as cross-feature correlations is difficult
(Liu, Chakraborty, and Mittal 2016) and remains an open
problem. As an alternative method, we introduce noise in
the correlation matrices. Since the key goal of our work is
to introduce human knowledge, we will explore the guaran-
tees for privacy as future work. Our generator focuses on
faithful modeling of feature correlations, thus, introducing
correlation noise is akin to Laplacian noise for differential
privacy. We use the method outlined in Hardin et al., (2013)
to generate noisy correlation matrices (after lines 19 and 22
in algorithm 1) which are then used for generating synthetic
data. The method is as follows: given a correlation matrix
Ĉ of size N ×N obtained after advice, the maximum noise
level to be inserted ε and the dimension of the noise space
M, the initial step is to select N unit vectors from RM thus
forming a matrix U of sizeM×N . The noisy correlation
matrix Ĉn can then be written as,

Ĉn = Ĉ + ε(UTU − I) (14)

where I is an identity matrix and |Ĉn(ij) − Ĉij | ≤ ε for
1 ≤ i, j ≤ N . It can be shown by using the Gerhsgorin’s
disk theorem (Gerschgorin 1931) and Weyl’s inequalities
(Weyl 1912) that the obtained correlation matrix is positive
semi-definite and thus admits a Cholesky decomposition. We
refer to Hardin et al., (2013) for a formal proof.

Data set #Features #+ve examples #-ve examples
NS 19 44 6
PPMI 35 554 919
ADNI 68 76 260
MIMIC 18 5813 40707

Table 1: Evaluation domains and their properties.

4 Experiments
We aim to answer the following questions explicitly:

Q1. Data generation: Does providing advice to GANs
help in generating better quality data?
Q2. Sample efficiency: Are GANs with advice effective
for data sets that have few examples?
Q3. Advice quality: How does bad advice affect the
quality of generated data?
Q4. Class imbalance: How well does human advice han-
dle class imbalance?
Q5. GANs comparison: How does our method compare
to state-of-the-art GAN architectures.



Q6. Privacy: How does our method handle privacy?

Q7. Effect of stabilization approaches: Can our method
take advantage of stabilized GAN training and generate
better quality data?

Q8. Capturing correlations: How well does HA-GAN
capture correlations in generated data?

Data sets: We consider 4 real clinical data sets (Table 1).

1. Nephrotic Syndrome (NS) is a novel data set of symp-
toms that indicate kidney damage. This consists of 50 kid-
ney biopsy images along with the clinical reports sourced
from Dr Lal PathLabs, India 2. We use the clinical reports
that consist of the values for kidney tissue diagnosis which
can confirm the clinical diagnosis and help to identify high-
risk patients and influence treatment decisions and help
medical practitioners to plan and prognosticate treatments.

2. Parkinson’s (PPMI) data consists of aggregated clinical
data for prediction of Parkinson’s disease and is obtained
from an observational study (Marek et al. 2011; Dhami
et al. 2017) with the main aim of identifying features or
biomarkers that impact Parkinson’s disease progression.

3. Alzheimer’s (ADNI) data is obtained from the
Alzheimer’s Disease Neuroimaging Initiative study
(Petersen et al. 2010) aimed to find progression markers
for Alzheimer’s disease and develop treatments that can
slow the progression. We consider data obtained by
processing the MRI images of 336 patients.

4. MIMIC database (Johnson et al. 2016) consists of deiden-
tified information of patients admitted to critical care units
at a large tertiary care hospital. The features included are
predominately time window aggregations of physiologi-
cal measurements from the medical records. We selected
relevant lab results, vital sign observations and feature
aggregations.

Baselines: We consider 4 GAN models that are specifi-
cally proposed for medical data set generation or tabular data
generation.

1. medGAN (Choi et al. 2017): uses an encoder decoder
framework along with a GAN framework for electronic
health record data generation.

2. medWGAN and medBGAN (Baowaly et al. 2019): are
the variants of medGAN architecture and uses WGAN
with gradient penalty and boundary seeking (Hjelm et al.
2018) to generate better quality synthetic data.

3. Conditional Tabular GAN (CTGAN) (Xu et al. 2019):
extends the GAN architecture by augmenting the training
procedure with mode-specific normalization and using a
conditional generator.

Advice Acquisition Here we compile the sources from
which we obtain the advice,

2https://www.lalpathlabs.com/

Figure 2: Effect of ε on generative performance.

1. Nephrotic Syndrome: This is a novel real data set and
the advice is obtained from a nephrologist in India.
According to the problem statement from the expert,
nephrotic syndrome involves the loss of a lot of protein
and nephritic syndrome involves the loss of a lot of blood
through urine. A kidney biopsy is often required to diag-
nose the underlying pathology in patients with suspected
glomerular disease. The goal of the project is to build
a clinical support system that predicts the disease using
clinical features, thus reducing the need of kidney biopsy.
Since the data collection is scarce, a synthetic data set
can help in better understanding of the disease from the
clinical features.

2. Parkinson’s: The information regarding the correlation
between various clinical features is present within the
PPMI study (Marek et al. 2011) and is used in this work.
We also obtain correlation information after contacting
the authors of Dhami et al. 2017 where an expert advice
from a neurologist is used to select the set of important
features and their correlations.

3. Alzheimer’s: The information regarding the correlation
between various clinical features is present within the
ADNI study (Petersen et al. 2010) and is used in this
work. Some correlations were also obtained from a study
of Alzheimer’s disease and its correlation with Mini
Mental State Examination (Park, Seo, and others 2011).

4. MIMIC: The feature set and the expected correlations are
obtained in consultation with trauma experts at a major
hospital.
Both the generator and discriminator are neural networks

with 4 hidden layers. To measure the quality of the gener-
ated data we make use of the train on synthetic, test on real
(TSTR) method as proposed in (Esteban, Hyland, and Rätsch
2017). We use gradient boosting with 100 estimators and a
learning rate of 0.01 as the underlying model. We train the
GAN for 10K epochs and provide correlation advice every
1K iterations. Although the knowledge does not change, we
hypothesize that providing advice multiple times pushes the
generated feature value towards the desired correlations. Just
like learning a simple linear classifier where every iteration



Data Methods Recall F1 ROC PR

NS

GAN 0.584 0.666 0.509 0.911
HA-GANBA 0.42 0.511 0.518 0.886

medGAN N/A N/A N/A N/A
medWGAN N/A N/A N/A N/A
medBGAN N/A N/A N/A N/A

CTGAN 0.0 0.0 0.5 0.880
HA-GANGA 1.0 0.943 0.566 0.947

PPMI

GAN 0.657 0.324 0.490 0.477
HA-GANBA 0.046 0.079 0.484 0.258

medGAN 0.819 0.749 0.799 0.789
medWGAN 0.871 0.791 0.836 0.822
medBGAN 0.892 0.805 0.848 0.833

CTGAN 0.0 0.0 0.498 0.376
HA-GANGA 0.576 0.622 0.705 0.706

ADNI

GAN 0.725 0.339 0.502 0.511
HA-GANBA 0.011 0.017 0.491 0.423

medGAN 0.0 0.0 0.5 0.613
medWGAN 0.0 0.0 0.5 0.613
medBGAN 0.0 0.0 0.5 0.613

CTGAN 0.053 0.073 0.467 0.220
HA-GANGA 0.949 0.388 0.545 0.592

MIMIC

GAN 0.122 0.119 0.495 0.174
HA-GANBA 0.285 0.143 0.459 0.235

medGAN 0.374 0.163 0.478 0.279
medWGAN 0.0 0.0 0.5 0.562
medBGAN 0.0 0.0 0.5 0.562

CTGAN 0.0 0.0 0.5 0.125
HA-GANGA 0.979 0.263 0.598 0.567

Table 2: TSTR Results (≈ 3 dec.). N/A in Nephrotic Syndrome
denotes that all generated labels were of a single class (0 in our case)
and thus we were not able to run the discriminative algorithm in
the TSTR method. GA=good advice, BA=bad advice, ROC=AUC-
ROC, PR=AUC-PR.

learns the linear boundary, here every application of the ad-
vice makes the correlations between generated features closer
to the real data based on the expert advice. We have made
our code available anonymously at: https:// rb.gy/hfx2mh.

Q1. Data generation: Table 2 shows the results of the
TSTR method with data generated with (HA-GANGA) and
without advice (GAN). It shows that the data generated with
advice has higher TSTR performance than the data generated
without advice across all data sets and all metrics. Thus,
to answer Q1, providing advice to generative adversarial
networks captures the relationship between features better
and thus are able to generate better quality synthetic data.
The results in case of MIMIC data set presents an important
observation: Although the number of samples in the data
set are higher, the performance, even when bad advice is
given, against simple GAN architecture is better due to the
fact that MIMIC data is highly curated and includes feature
aggregation over time which might lead to some correlations
being lost and some new correlations to form. Thus if bad
advice is provided there is less effect in the generated data but
the good advice captures the remaining of the correlations
well to give superior performance. The underlying GAN,
which anyhow is unable to capture the hidden relationships
naturally performs poorly.

Q2. Sample efficiency: GANs with advice are especially
impressive in Nephrotic Syndrome data which consists of

only 50 examples across all metrics. It must be mentioned
that all the considered data sets are small in size, except
MIMIC, when compared to the number of samples typi-
cally required to train a GAN model. Figure 3 shows the
results with varying number of iterations in 3 domains. The
effect of advice is evident even when the number of training
iterations is small and the model is able to learn better than
the model without advice. Thus, we realize an important
property of incorporating human guidance in the GAN model
and can answer Q2 affirmatively. The use of advice appears
to make GANs effective in the presence of sparse data.

Q3. Advice quality: Table 2 also presents the results for
data generated with bad advice (HA-GANBA). To simulate
bad advice, we follow a simple process: if the advice spec-
ifies that the correlation between features is high, we set
the correlations in Ĉ to 0 and if the advice specifies that the
correlation is low, we set the correlations in Ĉ to be either
1 or -1 based on whether the original correlation is positive
or negative. As results show in table 2, providing bad ad-
vice adversely affects the performance answering Q3, thus
validating our claim that human is an ally in this learning.

Q4. Class imbalance: Nephrotic syndrome, Alzheimer’s
and MIMIC data sets are relatively imbalanced with a pos to
neg ratio of ≈ 8:1, 1:3.5 and 1:7 respectively. Most of the
medical data sets, except highly curated data sets, are imbal-
anced. A data generator model should be able to handle this
imbalance. Since our method explicitly focuses on the cor-
relations between features and generates better quality data
based on such relationships between features, our method is
quite robust to the imbalance in the underlying data. This
can be seen in the results in table 2 where advice based data
generation outperforms the non-advice and bad advice based
data generation. Thus, we can answer Q4 affirmatively.

Q5. GANs comparison: To answer Q5 we compare our
method to 4 GAN architectures used specifically for med-
ical and tabular data and the results are shown in table 2.
The results show that our method, with good advice, outper-
forms the baseline in 3 out of the 4 domain thus showing the
effectiveness of our method.

Q6. Privacy: Since all the considered data sets contain
only clinical values and thus have no identifiers, to show
the effect of incorporating privacy in our model we use UCI
Epileptic Seizure data (UES) and Kaggle Cervical cancer data
(KCC) (Fernandes, Cardoso, and Fernandes 2017). Table 3
presents our results after including privacy in our model (after
incorporating good advice) using noisy correlation matrices
with the noise factor ε=0.3 andM=5. The results show that
adding noise does decrease the performance of our model,
as expected, though the relationships between features are
still captured well. Figure 2 shows the effect of ε on the
quality of generated data for the UES data set. Quality of the
generated data decreases with increase in amount of noise
in the correlation matrices used to create the generated data
though not drastically. This shows that the noise with human
advice generates data that respects privacy while keeping the
relationship between features intact. This answers Q6.

Q7. Effect of stabilization approaches A potential rea-
son for the improved performance of HA-GAN (including

https://rb.gy/hfx2mh


Data set Methods Recall F1 AUC-ROC AUC-PR
AdaB GB AdaB GB AdaB GB AdaB GB

UES HA-GAN (A + P) 0.411 0.993 0.120 0.121 0.509 0.503 0.286 0.529
HA-GAN (A) 0.512 0.810 0.271 0.317 0.529 0.517 0.408 0.522

GAN 0.495 0.651 0.306 0.316 0.473 0.492 0.397 0.465

KCC HA-GAN (A + P) 0.247 0.865 0.137 0.131 0.521 0.542 0.223 0.472
HA-GAN (A) 0.754 0.896 0.124 0.122 0.520 0.485 0.419 0.483

GAN 0.256 0.204 0.243 0.276 0.587 0.596 0.291 0.478

Table 3: TSTR results (≈ 3 decimals) for our model including privacy. (A + P) is advice + privacy.

(a) (b) (c)

Figure 3: Varying results with respect to iterations. R=recall, PR=AUC-PR, NA=no advice, and WA=with advice.

Data Methods Recall F1 ROC PR

NS
GANP 0.586 0.683 0.521 0.938

HA-GANPBA 0.557 0.614 0.544 0.898
HA-GANPGA 1.0 0.955 0.578 0.956

ADNI
GANP 0.778 0.414 0.536 0.541

HA-GANPBA 0.215 0.112 0.498 0.436
HA-GANPGA 0.966 0.423 0.574 0.628

Table 4: TSTR Results (≈ 3 dec.) for WGAN with gradient penalty
(GANP ) and P (GA/BA)=good/bad advice in GANP

the cases with Bad Advice) is that the procedure is essen-
tially adding instance noise, which is known to stabilize GAN
training (Gulrajani et al. 2017). Thus, to clearly tease out
how much improvement is actually due to the expert knowl-
edge we test our method with a GAN stabilization approach,
namely, gradient penalties for Wasserstein GANs (we call it
GANP ) on 2 data sets. Table 4 shows that a simple GAN
stabilization approach can improve results when compared
to vanilla WGAN. After introducing the good advice, the
results further improve not only when compared to GANP

but also when compared to HA-GANGA in table 2. Similarly
for bad advice, the results are adversely affected when com-
pared to GANP but improve when compared to HA-GANBA.
Thus although GAN stabilization approach improve the per-
formance, introduction of advice further elevates the quality
of synthetic data generation thereby answering Q7.

Q8. Capturing Correlations: The premise of our work is
based on the observation that simple GAN architectures can-
not capture the hidden relationships in the medical data sets
which can lead to generation of poor quality synthetic data. It

can also make trusting the synthetic data hard since missing
any of the hidden relationships in medical data sets can lead
to potentially serious issues. In this work, we make use of
canonical correlation (Hotelling 1936) which is a method
of quantifying linear relationships between two multidimen-
sional variables. It can be thought of as a dimensionality
reduction technique akin to principal component analysis, the
difference lying in what the variables in the projected space
represent. Given two multi-dimensional data sets of random
variables, with correlations among the variables, canonical-
correlation analysis (CCA) obtains linear combinations of
the data set features with maximum correlation. Figures 4
- 7 show a distribution plot of the first principal component
obtained by the CCA on the considered real data sets and
the obtained synthetic data sets. Since we start with no in-
formation about the correlations in the real data set and keep
including the expert given correlations, we do not expect to
perfectly capture the correlations between all the features but
the aim is to be near to the real data correlation. In all data
sets, data generated with advice better captures relationships
between features answering Q8 affirmatively.

5 Conclusion
We presented a new GAN formulation that employs corre-
lation information between features as advice to generate
new correlated data and train the underlying GAN model.
We tested our model on real clinical data sets and show that
incorporating advice helps generate good quality synthetic
medical data. There are several future directions. 1. Provid-
ing advice only when required (active learning) can allow for



(a) Real (b) No Advice (c) With Advice

Figure 4: Canonical correlation distribution - Nephrotic Syndrome data.

(a) Real (b) No Advice (c) With Advice

Figure 5: Canonical correlation distribution - Parkinson’s data.

(a) Real (b) No Advice (c) With Advice

Figure 6: Canonical correlation distribution - Alzheimer’s data.

(a) Real (b) No Advice (c) With Advice

Figure 7: Canonical correlation distribution - MIMIC data.

significant reduction in the amount of effort on the human
side. 2. Several advice options, such as posterior regular-
ization (Ganchev et al. 2010), can be explored to capture
feature relationships explicitly. 3. Although our data is de-
identified, thus eliminating the need of differential privacy
(Dwork 2008), a general framework that upholds the data

privacy along the lines of using Cholesky decomposition is a
natural next step.
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