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1. Introduction
The principal attraction of statistical relational mod-
els is that they are more succinct than their propo-
sitional counterparts, leading to easier specification of
their structure by the domain experts and faster learn-
ing of their parameters. However, different proposed
models are good at expressing different kinds of knowl-
edge, making it difficult to compare their empirical
performance. For example, Markov Logic Networks
(MLNs)[1] express the knowledge as a set of weighted
formulas, while the models based on directed graphs
such as PRMs [3] and BLPs [7] use variablized nodes
and edges with shared parameters. While PRMs [3]
use aggregators max, min, avg etc to combine the in-
fluences due to several parents, other formalisms such
as BLPs [7] and RBNs[5] use rules such as Noisy-OR
to combine distributions.

The goal in this work is to present work in progress of
comparing two kinds of models in their ability to use
prior knowledge: directed models with combining rules
and undirected models based on weighted logics. More
precisely, we consider the following questions about
different formalisms:

1. What kind of prior knowledge is most suitable for
different models?

2. Given the same structural prior knowledge, how
do different models differ in learning speed and
generalization?

3. Which representation allows the experts to ex-
press their knowledge more easily for a given per-
formance?

4. How does each system’s performance vary with

increased fine tuning of its knowledge and its rep-
resentation?

Answering these questions in their full generality is a
long-term goal. We naturally expect different models
and systems to have different spheres of applicability
and dominance. In this paper, we compare learning
algorithms for first-order conditional influence (FOCI)
statements [8] to the Alchemy system1 for MLNs for
answering these questions. We begin to answer the
first question empirically in two domains by starting
with very simple prior knowledge. We compare the
performance of the two models in the context of a small
number of equivalent sets of rules. We show that the
directed models perform better than undirected mod-
els when there are a small number of appropriately
parameterized influence rules. On the other hand, we
expect the undirected models to dominate when there
are a large number of weakly predictive rules.

The second question demands a deeper study of how to
express equivalent pieces of prior knowledge in the two
kinds of models.The final two questions seek to address
the issues of ease of encoding of knowledge by human
experts and the sensitivity of the model to changes in
the knowledge and its representation. Answering these
questions requires a user study and a more thorough
evaluation than what we offer in this paper.

2. Experimental Setup

In this paper, we compare the undirected models rep-
resented by MLNs with parametric directed models
represented by FOCI statements. FOCI statements
specify directed graphical models with shared param-
eters and employ a variety of combining rules to com-
bine the target conditional distributions. They are
similar to a number of different representations includ-
ing PRMs, BLPs, and RBNs that are lifted versions of
Bayesian networks.

We compare the two systems in two domains: UW
dataset and Cora dataset. For UW-dataset, the goal is
to predict if a student was advised by a professor. The
database consists of 278 faculty members and students.
We used 2 rules: (1) If a student has co-authored pub-
lications with a professor, the student is likely to be
advised by the professor. (2) If a student has been a
TA for a course that a Professor teaches, the student
is likely to be advised by the Professor. These rules
when translated to the FOCI syntax [8] are:

CR{
If {student(S), professor(P), course(C)}
then taughtBy(P,C,Q), ta(S,C,Q)

1http://alchemy.cs.washington.edu/
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Qinf (Mean) advisedBy(S,P).
If {student(S), professor(P)}
then publication(P,W), publication(S,W)
Qinf (Mean) advisedBy(S,P).}

Associated with each rule is a conditional probability
distribution (CPT) that predicts the target given
the influencing attributes. The predicates inside
the If statements serve as conditions in which the
rules are fired. The distributions due to the different
instantiations of the same rule (multiple publications
or multiple courses) are combined using the Mean
combining rule (shown as (Mean) above). The
different rules are combined using either Noisy-Or or
Weighted Mean combining rule (shown as CR). The
rules used for MLNs are:
w1: student(S) ∧ professor(P) ∧ course(C)
∧ taughtBy(P,C,Q) ∧ ta(S,C,Q) :-
advisedBy(S,P).
w2: student(S) ∧ professor(P) ∧
publication(P,W) ∧ publication(S,W) :-
advisedBy(S,P).
The other domain we used is the citeseer domain,
where the goal is to predict if 2 citations refer to the
same one. The data consisted of 4300 pairs of similar
publications. We selected 500 of them at random.
Each pair was labeled as positive with a probability of
0.7. Similar to the other dataset, we used 2 rules: (1)
If two publications have similar title and same venue,
they are likely to refer to the same citation. (2) The
second rule is the transitive rule on the same citation.
Converting them to our syntax,
CR{
If {pub(P1), pub(P2)} then
similarTitle(P1,P2,T1,T2), sameVenue(P1,P2)
Qinf (Mean) sameBib(P1,P2).

If {pub(P1), pub(P2), pub(P3)} then
sameBib(P1,P3), sameBib(P3,P2)
Qinf (Mean) sameBib(P3,P2).

}

Similar to the earlier one, mean is used for multiple
instantiations of the same rule while weighted mean
or Noisy-Or is used for combining different rules. The
same rules when translated to MLNs will be
w1: similarTitle(P1,P2,T1,T2) ∧
sameVenue(P1,P2) :- sameBib(P1,P2).
w2: sameBib(P1,P3) ∧ sameBib(P3,P2) :-
sameBib(P1,P2).
Our learning algorithms would learn the parameters of
the CPTs and the weights of the weighted mean com-
bining rule. Alchemy was used to learn the weights
of the two clauses. We used 5-fold cross-validation
where the parameters (resp. the weights) were learned
using 4 folds and used to obtain a distribution over
the target in the test-fold. We measured the average
likelihood of the target over the test folds.

3. Results and Analysis

Algorithm UW Citeseer
CR-Learner 0.74 0.70

MLN-2 0.5 0.34
MLN-N 0.52 0.40

Table 1. Results of the learning algorithms. CR-Learner:
Gradient-descent algorithm that uses combining rules.
MLN-2: Alchemy with 2 clauses. MLN-N: Alchemy that
uses clauses for all possible combinations of values for the
predicates.

We had earlier derived Gradient-Descent and EM
based algorithms for both the weighted mean as well
as the Noisy-OR combining rule[8]. We present the
results in Table 1 for the algorithm that optimizes the
mean-squared error of the gradient (CR-Learner in the
table) along with the results of MLN weight learning
(MLN-2 in the table). For the MLN weight learning al-
gorithm, we used the discriminative learning option (-
d) and the rescaled conjugate gradient descent (-dCG)
learning algorithm. To our understanding, we have
used the state-of-the art discriminative weight learning
algorithms for MLNs. We used the MCSAT algorithm
for obtaining the distribution in the test fold. We also
experimented with different priors and different set-
tings of the parameters and present the best results of
Alchemy runs.

The results clearly demonstrate that in both domains,
likelihood of MLN-2 is not comparable to that of the
CR-Learner. While the CPTs of each rule has 8 en-
tries(2 values corresponding to each predicate in the
influents and resultant), a single weight for each clause
is insufficient to capture the CPT of a directed model.
Hence, we included clauses for each of the combination
of the truth values of the predicates of the antecedent
of each rule. This is to say that if a rule’s set of influ-
ents contains N literals, we consider using each literal
as is or negated, producing 2N rules. The results are
presented as MLN-N in the table. Though the like-
lihood for MLN-N increases marginally, it is still not
comparable with that of the directed models. We tried
different number of clauses, different versions of the
learning algorithms and different parameter settings
but the results were not too different.

We speculate a few reasons for this. First, it appears
that MLNs do not perform very well in the presence
of a small number of rules. The directed models have
more free parameters per rule and can learn a better
model. We included 7 more rules provided in the UW
dataset that used the advisedBy predicate and the per-
formance improved (the average likelihood was close
to 0.57). We also evaluated using most of the clauses
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(about 55 of them) in the UW-dataset where we ex-
cluded the clauses that used existential quantifiers and
the ones that used the predicates such as samePerson,
sameCourse, etc. for efficiency. This resulted in a
much better performance where the average likelihood
was 0.67. This suggests that the performance of MLNs
is highly sensitive to the number and form of the rules.
Also, for MLNs, it appears necessary to use knowl-
edge engineering to learn the target concept. It seems
to be an iterative process (at least in our experience)
where the domain expert begins with a certain num-
ber of clauses, learns weights, evaluates them, adds
more clauses if needed etc. While this is unquestion-
ably better than developing domain-specific solutions,
it still requires a significant amount of effort from a
domain expert to elucidate all the rules in the model.

Secondly, it has been shown in [6] that the weight
learning algorithms have to be modified in order to
capture a coherent distribution. More precisely, [6]
states and proves that when the weight of a unit clause
is changed, the weights of the other clauses where the
predicate is present must also be adjusted by a certain
factor. Although they argue this case for generative
learning, we suspect that this could be the case with
discriminative learning as well. We are currently pur-
suing research in this direction.

Thirdly, we observe that Alchemy drives the weights of
most clauses towards zero[1]. This is a very good solu-
tion when the clauses are being automatically learned
from data (a.k.a. structure learning). This has been
demonstrated by Huynh and Mooney [4] for discrimi-
native learning where they use L1 regularization that
uses a laplacian prior with zero mean on each weight.
But when provided with minimal number of rules from
a domain expert, the weights should not be driven to
zero. Alchemy weight learning algorithms use a gaus-
sian prior with zero mean (L2 regularization), but still
appear to drive weights to zero. We are currently ex-
perimenting with different priors for the weights.

Yet another issue could be the fact that Alchemy uses
MAP inference and uses the counts in MAP state to
approximate the expected counts for gradient compu-
tation. It is not clear if this is an issue in our domains,
since the number of clauses is very small. But, on the
other hand, the number of objects (citations, courses,
students, etc.) is high and this could lead to a very
large ground network. Hence, the approximation may
not be reflective of the expected counts. It will be
interesting to replace the inner loop of learning with
exact inference.

Finally, the problem of representing arbitrary distri-
butions using a minimal MLN remains an open prob-

lem. Use of complex combining rules such as Noisy-Or
makes the problem of capturing arbitrary distributions
more challenging. In addition, the conditions can be
factored out of the CPT and made separate like in
logical Bayesian networks [2] and as shown earlier us-
ing our abstract syntax. This will greatly reduce the
number of combinations in the CPT. For the current
implementation of Alchemy, it is also necessary to con-
vert each function to n predicates, where n is the range
of the function. This will lead to an exponential blow
up in the number of clauses.

4. Conclusions

Our objective in this work is to motivate a system-
atic study of different SRL models to understand their
strengths and weaknessses with the long-term goal of
developing a variety of models that can capture, in-
tegrate, and refine prior knowledge effectively. Our
initial experiments show that with small number of
rules, the directed models have a better performance
over MLNs as they learn more free parameters for the
same set of rules. There have been several fast in-
ference algorithms proposed based on lifted methods,
lazy methods, preprocessing methods etc that can im-
prove the quality of MAP estimates and can be inte-
grated to improve learning quality. The other ques-
tions raised in the introduction including the ability of
human users to express their knowledge succinctly in
a given formalism, the efficiency of learning with dif-
ferent kinds of prior knowledge, and the sensitivity of
learning to the representation of prior knowledge also
deserve serious study.
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