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Abstract

Lifted inference algorithms exploit model symme-
try to reduce computational cost in probabilistic in-
ference. However, most existing lifted inference
algorithms operate only over discrete domains or
continuous domains with restricted potential func-
tions. We investigate two approximate lifted varia-
tional approaches that apply to domains with gen-
eral hybrid potentials, and are expressive enough
to capture multi-modality. We demonstrate that
the proposed variational methods are highly scal-
able and can exploit approximate model symme-
tries even in the presence of a large amount of con-
tinuous evidence, outperforming existing message-
passing-based approaches in a variety of settings.
Additionally, we present a sufficient condition for
the Bethe variational approximation to yield a non-
trivial estimate over the marginal polytope.

1 Introduction
Probabilistic inference in Markov random fields (MRFs) and
their generalizations are intractable in all but the simplest
cases [Koller and Friedman, 2009]. Lifted inference meth-
ods tackle this challenge by exploiting symmetries in a given
model. Such methods construct groups of indistinguishable
random variables that can be used to collapse the model into
a simpler one on which inference is more tractable.

High-level approaches to lifted inference include message-
passing algorithms such as lifted belief propagation (BP)
[Singla and Domingos, 2008; Kersting et al., 2009] and lifted
variational methods [Bui et al., 2014; Gallo and Ihler, 2018].
The common theme across these methods is the construction
of a lifted graph on which the corresponding inference algo-
rithms are run. The message-passing algorithms are applied
directly on the lifted graph, while lifted variational methods
encode symmetries in the model as equality constraints in the
variational objective. These two approaches are directly re-
lated via the same variational objective, the Bethe free energy
[Yedidia et al., 2001; Yedidia et al., 2005]. While successful,
these methods were designed for discrete relational MRFs.

∗denotes equal contributions.

Existing work on lifting with continuous domains has fo-
cused primarily on Gaussian graphical models [Choi et al.,
2010; Choi et al., 2011; Ahmadi et al., 2011]. Hybrid Lifted
BP [Chen et al., 2019] extends lifted belief propagation to
continuous domains by using particle message passing and
coarse-to-fine approximate lifting to handle continuous ev-
idence. With this method, the quality of inference largely
depends on sampling. While it performs well on models
with simple marginals, it can fail to accurately model multi-
modal distributions and may have numerical or convergence
issues. Another lifted inference method for generic hybrid
domains [Choi and Amir, 2012] uses expectation maximiza-
tion to learn variational approximations of the MRF potentials
(this requires sampling from the potentials, which implicitly
assumes the potentials are normalizable) and then performs
lifted variable elimination or MCMC on the resulting varia-
tional model.

Our aim is to provide a general framework for lifted vari-
ational inference that can be applied to both continuous and
discrete domains with generic potential functions. Our ap-
proach is based on mixtures of mean-field models and a
choice of entropy approximation. We consider two entropy
approximations, one based on the Bethe free energy, whose
local optima are closely related to fixed points of BP [Yedidia
et al., 2001], and a lower bound on the differential entropy
based on Jensen’s inequality [Gershman et al., 2012].

We make the following key contributions: (1) We de-
velop the first generic lifted hybrid variational approach
for probabilistic inference: our approach does not make any
distributional or model assumptions, and it can be applied to
arbitrary factor graphs. (2) We consider two different types
of approximations based on mixtures of mean-field models.
To our knowledge, a systematic comparison of these two
different approximations for continuous models does not
exist in the literature. (3) We provide theoretical justifica-
tion for the Bethe free energy in the continuous case by
providing a sufficient condition for it to be bounded from be-
low over the marginal polytope. (4) We demonstrate the su-
periority of our approach empirically against particle-based
message-passing algorithms and variational mean field.

2 Preliminaries
A Markov Random Field (MRF) is specified by a hyper-
graph G = (V, C) with node set V and hyper-edge/clique



set C. Each node i ∈ V corresponds to a random variable xi
with domain Xi, and each clique c in C is associated with a
non-negative potential function ψc :

∏
i∈c Xi → R≥0 de-

fined over xc = {xi;∀i ∈ c}. A given MRF defines a
joint probability distribution p(x) = 1

Z
∏

c∈C ψc(xc) over
x = {xi;∀i ∈ V}, where Z is a normalizing constant.

We consider hybrid MRFs, i.e., MRFs with both discrete
and continuous random variables, so that Xi may either be
finite or uncountable. If all of the variables have contin-
uous domains and the product of potential functions is in-
tegrable, then the normalization constant exists, e.g., Z ,∫
x∈

∏
i∈V Xi

∏
c∈C ψc(xc) < ∞. The hypergraph G is often

visualized as a factor graph that represents cliques as factor
nodes and variables as variable nodes, with an edge joining
the factor node c to the variable node i if i ∈ c.

We consider two probabilistic inference tasks for a given
MRF: (1) marginal inference, i.e., computing the marginal
probability distribution p(xA) of a set of variables A ⊆ V ,
a special case of which is computing the partition function
Z when A = V; and (2) maximum a posteriori (MAP) in-
ference, i.e., computing argmaxxA p(xA) of the distribution
p(xA). In many applications, we will be given observed val-
ues xB for a set of variables B ⊆ V , and the corresponding
conditional marginal / MAP inference tasks involve comput-
ing p(xA|xB) instead of p(xA).
Variational Inference (VI) solves the inference problem
approximately by minimizing some divergence measure D,
often chosen to be the Kullback-Leibler divergence, be-
tween the true model and a family of more tractable ap-
proximate distributions Q, to obtain a surrogate distribution
q∗ ∈ argminq∈QD(q, p). The set Q is typically chosen to
trade off between the computational ease of inference in a sur-
rogate model q and its ability to model complex distributions.
When D is the KL divergence, the optimization problem is
equivalent to minimizing the variational free energy:

F(q) = −
∑
c∈C

Eq[ψc]−H[q] (1)

where H[q] denotes the entropy of the distribution q. Assum-
ing one can find a q∗ ∈ argminqF(q), the simpler model q∗
can be used as a surrogate for inference. A popular choice
for Q is the set of completely factorized distributions, a.k.a.
mean-field approximation, which greatly simplifies the opti-
mization problem.
Lifted Inference exploits symmetries that exist in the MRF
in order to reduce the complexity of inference. This is typ-
ically done by grouping symmetric variables or cliques to-
gether into a single super variable/clique and then tying to-
gether the corresponding marginals of all variables in the
same super variable/clique [Bui et al., 2014]. Detecting sym-
metries can be done in a top-down [Singla and Domingos,
2008] or bottom-up [Kersting et al., 2009] fashion. We use
the color passing (CP) algorithm [Kersting et al., 2009], a
bottom-up approach that can be applied to arbitrary MRFs. In
CP, all variable and factor nodes are initially clustered based
on domain/evidence and the potential functions. Variables
with the same domain or the same evidence value v will be as-
signed the same color. Each clique node stacks the color of its

neighboring nodes in order and appends its own color. Each
variable node collects the colors of its neighboring cliques
and is assigned a new color. The process is repeated un-
til convergence. The color information is the neighborhood
structure information and grouping nodes with the same color
can be used to compress the graph. We use the notation #(c)
and #(i) to denote the number of factors in a super factor c
and the number of variables in super variable i, respectively.

3 Proposed Approaches
Our aim is to develop distribution-independent, model-
agnostic lifted variational inference algorithms that operate
on arbitrary hybrid MRFs. To overcome the limitations
of unimodal variational distributions, e.g., mean-field, we
choose our approximate family Q to be a family of mixture
distributions, and following Jaakkola and Jordan [1998] and
Gershman et al. [2012], we require each mixture component
to be fully factorized. Specifically,

q(x) =

K∑
k=1

wkq
k(x) =

K∑
k=1

wk

∏
i

qki (xi|ηki ), (2)

where K is the number of mixture components, wk ≥ 0 is
the weight of the kth mixture (a shared parameter across all
marginal distributions), and

∑K
k=1 wk = 1. Each qki (xi) ,

qki (xi; η
k
i ) is some valid univariate distribution with parame-

ters ηki , e.g., a Gaussian or Beta distribution in the continuous
case, or a Categorical distribution in the discrete case.

3.1 Entropy Approximations
Ideally, we would find the appropriate model parameters η
and w by directly minimizing the VI objective Eq (1). Un-
fortunately, computing the entropy H[q] is intractable for ar-
bitrary variational distributions of the form (2). A notable ex-
ception is when K=1, which is equivalent to the naı̈ve mean-
field approximation. In the general case, we consider two
tractable entropy approximations: one based on Bethe free
energy approximation and one based on Jensen’s inequality.

The Bethe Entropy. HB approximates H as if the graph G
associated with p were tree-structured:

HB[q] ,
∑
c∈C

H[qc] +
∑
i∈V

(1− |nb(i)|)H[qi],

where nb(i) = {c ∈ C|i ∈ c} is the set of cliques that contain
node i in their scope. The Bethe free energy (BFE) is then
defined as

FB(q) , −
∑
c

Eq[ψc]−HB [q].

The BFE approximation is exact whenever the hypergraph
G is acyclic, i.e., tree-structured. While variational methods
seek to optimize the variational objective directly, message-
passing algorithms such as belief propagation (BP) can also
be used to find local optima of the BFE [Yedidia et al., 2001].
As message-passing algorithms can suffer from convergence
issues, gradient-based methods that optimize the variational
objective directly are sometimes preferred [Welling and Teh,
2001; Guo et al., 2019a].



Jensen’s Inequality. Non-parametric variational inference
(NPVI) approximates the entropy using Jensen’s inequality
[Gershman et al., 2012].

HJ [q] = −
∑
k

wk log(
∑
j

wjEqk [q
j ]) (3)

There are two reasons to prefer the Bethe entropy approxi-
mation over the NPVI lower bound approximation (3). First,
the BFE is exact on trees; for tree-structured models, it is
likely to outperform NPVI. Second, the NPVI lower bound
(3) does not factorize over the graph, potentially making it
less useful in distributed settings. Conversely, one advantage
of the NPVI approximation over the Bethe entropy is that it
gives rise to a provable lower bound on the partition func-
tion Z assuming exact computation. The Bethe entropy only
provably translates into a lower bound on tree structured mod-
els or for special model classes [Ruozzi, 2012; Ruozzi, 2013;
Ruozzi, 2017].

Another known drawback of the BFE is that, in the case
of continuous random variables, it need not be bounded from
below over the local marginal polytope. The local marginal
polytope is a further relaxation of the variational problem in
which the optimization over distributions q ∈ Q is replaced
by a simpler optimization problem over only marginal distri-
butions that agree on their univariate marginals. Unbounded-
ness can occur even in Gaussian MRFs [Cseke and Heskes,
2011]. This makes BFE potentially undesirable for continu-
ous MRFs in practice. However, for the optimization prob-
lem considered here (over a subset of marginals (2) that are
globally consistent, referred to as the marginal polytope), it
is known that the BFE is bounded from below for Gaussian
MRFs [Guo et al., 2019b]. Here, we generalize this result to
a larger class of distributions induced by MRFs, further justi-
fying the use of BFE in our variational framework.
Theorem 1. If there exists a collection of densities gi ∈
P(Xi) for each i ∈ V such that supx∈X

p(x)∏
i gi(xi)

<∞, then
infq∈P(X )−Eq[log p]−HB[q] > −∞, where P(X ) is the set
of all probability densities over X ,

∏
i∈V Xi, i.e., the BFE

is bounded from below.

Many naturally occurring distributions satisfy the condi-
tion of the theorem: mean-field models, multivariate Gaus-
sians and their mixtures, bounded densities with compact sup-
port, etc. The proof of the theorem is given in Appendix A.

3.2 Lifted Variational Inference
Once symmetries are detected using CP or an alternative
method, they can be encoded into the variational objective
by introducing constraints on marginals, e.g., adding a con-
straint that all variables in the same super node have equiva-
lent marginals. This is the approach taken by [2014] for lifted
variational inference in discrete MRFs. In our mixture distri-
bution setting, this leads to the following,

∀i, j ∈ i,

K∑
k=1

wkq
k
i (xi) =

K∑
k=1

wkq
k
j (xj) (4)

If preferred, these constraints could be incorporated into the
objective as a soft penalty to encourage the solution to contain

the appropriate symmetries as discovered by color-passing.
However, adding constraints of this form to the objective
does not reduce the cost of performing inference in the lifted
model. In order to make inference efficient, we observe that
the following constraints are sufficient for Eq (4) to hold.

∀i, j ∈ i,∀k, qki (xi) = qkj (xj) (5)
Under the constraints in Eq (5), we can simplify the vari-
ational objective by accounting for the shared parameters.
Consider a compressed graph G with a set of super variables
V and a set of super factors C, each i ∈ V and each c ∈ C
corresponds to #(i) variables and #(c) factors in the original
graph. Variables in the super variable i share the same param-
eterized marginals. Using this observation, we simplify the
computation of unlifted BFE by exploiting these symmetries:∑

i∈V

#(i) · Eqi(xi)

[
(1− |nb(i)|) log qi(Xi)

]
+

∑
c∈C

#(c) · Eqc(xc)

[
log qc(Xc)− logψc(Xc)

]
.

The NPVI approximation Eq (3) can be lifted similarly using
parameter sharing conditions (5). Concretely, the innermost
expectation in Eq (3) can be re-written in terms of the varia-
tional parameters associated with underlying super variables:

Eqk [q
j ] =

∏
i∈V

∫
qki (xi)q

j
i (xi)dxi

=
∏
i∈V

[

∫
qki (xi)q

j
i (xi)dxi]

#(i)

Although the optimal value of the variational objective un-
der the constraints (4) or (5) is always greater than or equal
to that of the unconstrained problem, we expect gradient de-
scent on the constrained optimization problem to converge
faster and to a better solution as the optimal solution should
contain these symmetries. The intuition for this is that the
solutions to the unconstrained optimization problem, i.e., ap-
proximate inference in the unlifted model, can include both
solutions that do and do not respect the model symmetries.

Given a ground MRF (possibly with evidence) and a choice
of entropy approximation (either using Bethe entropy or
NPVI), we first find the variational distrubtion q∗ by gradi-
ent descent on the appropriate VI objective F(q) (Eq (1))
w.r.t. the parameters (w, η) of mean-field variational mix-
ture q, where the kth component qki of variable marginal is
taken to be a Gaussian distribution for all continuous variable
i ∈ V and a categorical distribution otherwise. The lifted
VI algorithms additionally exploit symmetries by using (5) to
simplify the objective and only optimize over the variational
parameters ηi associated with the super variables i ∈ V; af-
ter the optimization procedure, all the original variables con-
tained in each super variable are assigned the same variational
marginal parameters as in (5). The expectations in the varia-
tional objectives can be approximated in several ways – sam-
pling, Stein variational methods [Liu and Wang, 2016], etc.
We approximate the expectations using Gaussian quadrature
[Golub and Welsch, 1969]. Once q∗ is obtained, given a set
of query variables U , marginal inference is approximated by



p(xU ) ≈ q∗(xU ) =
∑K

k=1 wk

∏
i∈U q

∗k
i (xi), and (marginal)

MAP is approximated by argmaxxU
q∗(xU ) via coordinate

ascent or gradient ascent.

3.3 Coarse-to-Fine Lifting
A common issue in lifting is that introducing evidence breaks
model symmetries as variables with different evidence values
should be considered as different even if they have similar
neighborhood structure. This issue is magnified when vari-
ables are continuous: it is unlikely that two otherwise sym-
metric variables will receive the exact same evidence values.
As a result, even with a small amount of evidence, many of
the model symmetries may be destroyed, making lifting less
useful. To counteract this effect, we propose a coarse-to-fine
(C2F) approximate lifting method in the variational setting
that is based on the assumption that the stationary points of
a coarsely compressed graph and a finely compressed graph
should be similar. A number of C2F lifting schemes, which
start with coarse approximate symmetries and gradually re-
fine them, have been proposed for discrete MRFs [Habeeb et
al., 2017; Gallo and Ihler, 2018]. Our approach specifically
aims to approximate symmetries to handle the above issue
with continuous evidence.

Our C2F approximate lifting uses k-means clustering
to group the continuous evidence values into s clusters,
E1, . . . , Es. For each cluster Ei ∈ {E1, . . . , Es}, we de-
note the corresponding set of observation nodes as Oi. Each
observed variable o ∈ Oi is treated as having the same ev-
idence distribution bEi

(xo) = N (µEi
, σ2

Ei
), where µEi

and
σ2
Ei

are the mean and variance of cluster Ei. With this for-
malism, the evidence clustering is coarse when s is small, but
we can exploit more approximate symmetries, resulting in a
more compressed lifted graph. As s increases, the evidence
variables are more finely divided.

To apply this lifting process in VI, we interleave the oper-
ation of refining the compressed graph and gradient descent.
The clustering is initialized with s = 1 and CP is run un-
til convergence to obtain a coarse compressed graph. Then,
we perform gradient descent on the coarse compressed graph
with the lifted Bethe variational method. After a fixed num-
ber of iterations, we refine the coarse compressed graph by
splitting evidence clusters. We use the k-means algorithm
to determine the new evidence clusters, and obtain a refined
compressed graph using CP. We keep iterating this process
until no evidence group can be further split, e.g., when only
one value remains or the variance of each cluster is below a
specified threshold, and the optimization converges to a sta-
tionary point. A precise description of this process can be
found in Algorithm 1. CP is not run from the start after each
split: we simply assign a new evidence group and a new color
and resume CP from its previous stopping point.

4 Experiments
We investigate the performance of the proposed lifted varia-
tional inference approach on a variety of both real and syn-
thetic models. We aim to answer the following questions ex-
plicitly: Q1: Do the proposed variational approaches yield

Algorithm 1 Coarse-to-Fine Lifted VI

1: Input: A factor graph G, evidence E and splitting
threshold ε

2: Return: The model parameters η and w
3: E , η, w ← initial clustering of continuous evidence and

model parameters respectively
4: Group variables with same domain/evidence distribution

and factors with same potential together
5: G← run CP until convergence
6: repeat
7: η, w ← run grad. descent on variational obj.
8: for each Ei ∈ E do
9: if σ2

Ei > ε then
10: Ei ← Divide Ei in two using k-means
11: E ← (E \ Ei) ∪ Ei
12: end if
13: end for
14: Assign new colors to evidence according to E
15: G← run CP until convergence
16: until convergence

accurate MAP and marginal inference results? Q2: Does lift-
ing result in significant speed-ups versus an unlifted varia-
tional method? Q3: Does C2F lifting yield accurate results
more quickly for queries with continuous evidence?

We compare the performance of our variational approach
using different entropy approximations (denoted “BVI” for
Bethe approximation and “NPVI” for Jensen’s lower bound
approximation) with message-passing algorithms including
Expectation Particle BP (EPBP) [Lienart et al., 2015], Hy-
brid Lifted BP (HLBP) [Chen et al., 2019], and Gaussian BP
(GaBP). To illustrate the generality of our results, we con-
sider three different model settings – Hybrid Markov Logic
Networks (HMLNs) [Wang and Domingos, 2008], Relational
Gaussian Models (RGMs) [Choi et al., 2010], and Relational
Kalman Filters (RKFs) [Choi et al., 2011].

We report the `1 error of MAP predictions and KL diver-
gence DKL(pi||qi) averaged across all univariate marginals i
in the (ground) conditional MRF. As the models in the RGM
and RKF experiments are Gaussian MRFs, their marginal
means and variances can be computed exactly by matrix op-
erations. For the HMLN experiments, the exact ground truth
can be obtained by direct methods when the number of ran-
dom variables in the conditional MRF is small. All timing
results, unless otherwise noted, were performed on a single
core of a 2.2 GHz Intel Core i7-8750H CPU with 16GB mem-
ory. Source code is available on https://github.com/leodd/
Lifted-Hybrid-Variational-Inference.

4.1 Hybrid MLNs
Unlike standard MLN, where only first order formulas are al-
lowed, HMLN extends it by adding continuous formulas and
hence its grounded model corresponds to a MRF with hybrid
domain. In this section, we first consider a toy HMLN with
known ground truth marginals in order to assess the accuracy
of the different variational approaches in the hybrid setting.
Then, we showcase the efficiency of our methods, particu-
larly via lifting, on larger-scale HMLNs of practical interest.

https://github.com/leodd/Lifted-Hybrid-Variational-Inference
https://github.com/leodd/Lifted-Hybrid-Variational-Inference


We construct a Toy Hybrid MLN for a position domain:

0.1 : in(A,Box) ∧ in(B,Box)→ attractedTo(A,B)

0.2 : ¬attractedTo(A,B) · [pos(A) = p1]+

attractedTo(A,B) · [pos(B) = p2],

where A and B are different classes of objects in a physics
simulation, Box is the class of box instances, and p1, p2 are
real values corresponding to object positions. Predicates in
and attractedTo have discrete domain {0, 1}, while pos is
real-valued. The equality operation x = y, is the shorthand
for−(x−y)2 which corresponds to linear Gaussian potential
exp(−(x− y)2) in the grounded MRF.

The marginals of pos(A) and pos(B) will generally be
multimodal, specifically mixtures of Gaussians; with mul-
tiple object instances, unimodal variational approximations
like mean-field will likely be inaccurate. Note that the num-
ber of mixture components in the marginal distributions is ex-
ponential in the number of joint discrete configurations in the
ground MRF, so we consider a small model in which exact
inference is still tractable, generating 2, 3, and 2 instances
of the A, B, and Box classes respectively. The resulting
ground MRF contains 16 discrete random variables yielding
marginals with 216 mixture components. The small model
size is only for the purpose of evaluation against brute-force
exact inference; our methods can scale to larger models.

We performed marginal inference on the continuous nodes
and report results against ground truth in Table 1, using BVI,
NPVI, and their lifted versions (abbreviated as L-BVI and L-
NPVI). All methods tend to give improved performance as
the number of mixture components (K) increases indicating
that the number of mixture components is indeed important
for accuracy in multimodal settings. However, increasing K
generally makes the optimization problem more difficult, re-
quiring more iterations for convergence. We note that even
though L-BVI reported a lower `1 error with K = 1, the KL-
divergence of this was larger than at K = 3 or 5, indicating
that it converged to a good local optimum for the MAP task
but not as good for the marginal inference task. This distinc-
tion can be seen more broadly across the two entropy approxi-
mations for this problem, as BVI/L-BVI generally gave better
fits to the marginals than NPVI/L-NPVI, whereas NPVI/L-
NPVI performed better at estimating the marginal modes.

It is also worth noting that lifting seems to act as a regular-
izer here: when the number of mixture components is small,
both the lifted versions outperformed their unlifted counter-
parts, e.g., atK=1. This suggests that lifting may both reduce
computational cost (30% to 40% speedup on this model) and
encourage the optimization procedure to end up in better local
optima, which positively answers Q1 and Q2.

Next, we consider two larger scale HMLNs of practical in-
terest. The Paper Popularity HMLN domain is determined
by the following formulas.

0.3 : PaperPopularity(p) = 1.0

0.5 : SameSession(t1, t2)·
[TopicPopularity(t1) = TopicPopularity(t2)]

0.5 : In(p, t) · [PaperPopularity(p) = TopicPopularity(t)],

Algorithm Average KL-Divergence
K = 1 K = 3 K = 5

BVI 0.513± 0.947 0.009± 0.006 0.009± 0.007
L-BVI 0.039± 1e− 5 0.004± 0.001 0.004± 0.002
NPVI 4.586± 2.977 0.026± 0.007 0.022± 0.003

L-NPVI 1.978± 3.878 0.038± 0.002 0.039± 0.001
Algorithm Average `1-error

K = 1 K = 3 K = 5
BVI 0.227± 0.440 0.059± 0.026 0.049± 0.035

L-BVI 0.007± 1e− 4 0.049± 0.027 0.020± 0.012
NPVI 1.641± 1.106 0.007± 4e− 4 0.012± 0.009

L-NPVI 0.671± 1.327 0.012± 0.006 0.012± 0.006

Table 1: Results of variational methods on toy HMLN.

where PaperPopularity(p) and TopicPopularity(t) are
continuous variables in [0, 10], indicating the popularity of
paper and topic. SameSession(t1, t2) and In(p, t) are
Boolean variables, indicating if two topics are in the same
session, and if a paper p belongs to a topic t, respectively. We
instantiate 300 paper instances and 10 topic instances, which
results in 3,400 variables and 3,390 factors in the grounded
MRF. We generated random evidence for the model, where
70% of the papers and 70% of the topics were assigned a
popularity from a uniform distribution U(0, 10). For 70%
of the papers p and all topics t, we assign In(p, t′) and
SameSession(t, t′) for all possible t′ ∈ Topic using a
Bernoulli distribution (p = 0.5).

The Robot Mapping HMLN domain contains 3 discrete
relational variables, 2 continuous relational variables, and 10
formulas, as described in the Alchemy tutorial [Wang and
Domingos, 2008]. The instances and evidences are from real
world robot scanning data, which result in a grounded MRF
with 1,591 random variables and 3,182 factors.

Results: We performed MAP inference with the VI
methods and evaluated them against Hybrid MaxWalk-
SAT (HMWS) [Wang and Domingos, 2008]. Each
method is evaluated by computing the energy E(x̂) =
− log(

∏
c∈C ψc(x̂c)), essentially the negative log probability,

of its estimated MAP configuration. For HMWS, we set the
greedy probability to 0.7, the standard deviation of the Gaus-
sian noise to 0.3, and disabled re-running for fair comparison.

As can be seen in Figure 1, in both domains, the MAP as-
signment produced by the VI methods is significantly better
than the one by HMWS, providing support for Q1. In addi-
tion, given the amount of continuous evidence, there is not
a significant performance difference between BVI and Lifted
BVI. However, C2F BVI takes significantly less time to con-
verge to a good solution than both BVI and Lifted BVI, pro-
viding strong evidence for Q3, namely that C2F results in
better accuracy more quickly.

4.2 Relational Gaussian Models (RGMs)
We performed approximate inference on a RGM with the
recession domain from [Cseke and Heskes, 2011]. The
RGM has three relational atoms Market(S), Loss(S,B),
Revenue(B) and one random variable Recession, where S
and B denote two sets of instances, the categories of market
and banks respectively. For testing, we generated 100 Market
and 5 Bank instances, and used the ground graph as input.



(a) Paper Popularity (b) Robot Mapping (c) RGM

Figure 1: (a) - (b) comparison of the negative log probability of the approximate MAP assignment versus running time. (c) comparison of
rate of convergence between BVI, L-BVI, and C2F-BVI with 20% evidence.

Algorithm Avg. `1 Error Avg. KL-Divergence
EPBP 5.17e−2± 4.25e−2 0.473± 0.246
HLBP 6.26e−2± 4.29e−2 0.485± 0.259
BVI 6.48e−5± 2.57e−4 4.95e−3± 5.13e−2

L-BVI 5.77e−5± 2.47e−4 4.95e−3± 5.13e−2
C2F-BVI 7.92e−4± 2.31e−3 4.95e−3± 5.13e−2

NPVI 3.22e−5± 2.89e−5 5.14e−4± 4.14e−5
L-NPVI 3.29e−5± 5.58e−5 5.14e−4± 4.14e−5

Table 2: Evaluation of various methods on RGM.

To assess the impact of lifting and C2F, we randomly chose
20% of the variables, assigned them a value uniformly ran-
domly from [−30, 30], and then performed conditional MAP
and marginal inference.

Figure 1c plots the variational free energy, i.e., the VI ob-
jective Eq (1), versus CPU time for BVI, L-BVI, and C2F-
BVI. All three methods used the Adam optimizer with learn-
ing rate 0.2, β1 = 0.9, β2 = 0.999. The plot shows that C2F-
BVI converges faster than L-BVI, which is in turn faster than
BVI. Note that the sawtooth shape of C2F-BVI is a result of
evidence splitting. This shows that lifting and C2F reduces
cost of inference, answering Q2 and Q3 affirmatively.

To assess the accuracy of inference methods, we randomly
chose 5% to 20% of the random variables and generated ev-
idence values as in the previous task. We randomly gener-
ated five evidence settings and evaluated all VI methods with
the same setup as above as well as EPBP with 20 sampling
points. All algorithms were run to convergence and compared
against the ground truth. As Table 2 shows, on this simple
unimodal model, all VI methods have very low error and KL-
divergence, while particle-based methods have higher error /
KL-divergence as a result of the sampling procedure, provid-
ing evidence for Q1. In general, NPVI tends to estimate the
mode of the distribution better than BVI but in multimodal
settings tends to result in a higher KL-divergence than BVI.

4.3 Relational Kalman Filtering
To further investigate Q1, we performed an experiment with
Relational Kalman Filters (RKFs). A standard Kalman filter
(KF) models the transition of a dynamic system with xt+1 =
Axt + w with noise ot = Cxt + v, where A denotes the
transition matrix and C represents the observation matrix. A
key assumption in KF is that the transition and noise follow

Algorithm `1 Diff.(GaBP) time (s)

Tr
ee

EPBP 0.18± 0.15 233.6

HLBP 0.25± 0.24 8.0

BVI 2.86e−5± 3.71e−5 577.2

L-BVI 1.88e−5± 1.85e−5 23.0

C2F-BVI 1.64e−5± 1.80e−5 22.8

C
yc

le

EPBP 0.34± 0.41 149.2

HLBP 0.36± 0.55 75.9

BVI 3.26e−5± 5.08e−5 222.1

L-BVI 4.65e−5± 5.78e−5 151.0

C2F-BVI 2.16e−4± 4.38e−4 140.8

Table 3: Accuracy of lifted methods for RKFs against GaBP.

a normal distribution, i.e., w ∼ N (0, Q), and v ∼ N (0, R),
for covariance matrices Q and R. The RKF model defines a
lifted KF, i.e. similar state variables and similar observation
nodes share the same transition and observation model.

We use extracted groundwater level data from the Repub-
lican River Compact Association model [McKusick, 2003].
The data set contains a record over 850 months of the water
level data for 3,420 wells. We followed the same data prepro-
cessing steps as in [2015], where wells in the same area are
grouped together and are assumed to share same transition
and observation0 model. We test our algorithms on two dif-
ferent structure settings, a tree-structured model and a model
with cycles. For the tree-structured model, we define the ma-
trices A = α · I , C = I , Q = β · I , R = γ · I where
α ∼ U(0.5, 1), β ∼ U(5, 10), γ ∼ U(1, 5) and I is the iden-
tity matrix. For general model, we select A = α · I + 0.01
and Q = β · J , where J is the matrix of ones, and other
matrices are as before. We chose 20 months of record as the
observation of the model. Note that the model defined has
a linear Gaussian potential exp((xt+1 − Axt)2/σ2) with the
number of state variables as its dimension, which makes in-
ference challenging. For simplicity, we expressed the model
as a product of pairwise potentials.

We compared our VI methods and Particle BP (EPBP and
HLBP) methods against GaBP. The VI methods used Adam
optimizer with learning rate 0.2; BP used 20 particle points.



Table 3 reports the resulting average `1 difference and KL-
divergence of the MAP estimate of the last time step nodes
against GaBP. The VI methods are accurate in this model,
owing mostly to the unimodality of the marginals, provid-
ing evidence in support of Q1 for this setting, even when the
graph contains cycles. The VI methods also obtained bet-
ter KL-divergence than Particle BP methdos, and the KL-
divergence of all methods would likely further reduce with
additional mixture components/particles.

Significant speed-ups are obtained by the lifted methods
with a small improvement in the case of C2F. The timing
results indicate significant performance improvements from
lifting, answering Q2 affirmatively. However, as the imple-
mentations were not optimized for performance in this case,
the timing comparison between BVI vs EPBP is misleading.
As the VI methods can also be efficiently implemented in
Tensorflow to exploit parallel hardware (note this is inher-
ently difficult for a sampling method like EPBP), we also
provide timing experiments in a high performance setting
for BVI/NPVI and their lifted versions. For BVI/L-BVI, the
TensorFlow implementation took 107.8/5.6s to run on tree
model and 16.3/12.6s on cycle model; NPVI/L-NPVI took
105.7/5.11s and 15.7/12.8s on tree and cycle models re-
spectively, and gave identical performance to BVI/L-BVI.

Finally, comparing to the most recent hybrid lifted algo-
rithm, HLBP [Chen et al., 2019], although the table shows
that HLBP is faster, the timing results are again incomparable
because of implementation differences between BP and VI
methods (our Tensorflow implementation of lifted VI meth-
ods are much faster). In this case, HLBP is significantly less
accurate than VI, likely due to noise introduced by sampling.
We also observed that the convergence of HLBP is very sen-
sitive to the parameters of the model.

5 Discussion
We presented distribution-independent, model-agnostic hy-
brid lifted inference algorithms that makes minimal assump-
tions on the underlying distribution, and a simple C2F ap-
proach for handling symmetry breaking as a result of con-
tinuous evidence. We showed experimentally that the lifted
and the C2F VI methods compare favorably in terms of accu-
racy against exact and particle-based methods for MAP and
marginal inference tasks and can yield speed-ups over their
non-lifted counterparts that range from moderate to signifi-
cant, depending on the amount of evidence and the distribu-
tion of the evidence values. Additionally, we proved a suffi-
cient condition under which the BFE over the marginal poly-
tope is bounded from below, yielding a nontrivial approxima-
tion to the partition function, which supports our variational
approach and may be of independent theoretical interest.
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A Proof of Theorem 1
Theorem. If there exists a collection of densities gi ∈ P(Xi)

for each i ∈ V such that supx∈X
p(x)∏
i gi(xi)

<∞, then
inf

q∈P(X )
−Eq[log p]−HB[q] > −∞,

where P(X ) is the set of all probability densities over X .

Proof. The BFE can be expressed as

FB(q) = Eq[− log p]−
n∑

i=1

H[qi] +
∑
c∈C

T[qc]

≥ Eq[− log p]−
n∑

i=1

H[qi]

, L(q),
where the inequality follows from the fact that clique total
correlation,

T[qc] := KL(qc||
∏
i∈c

qi) = Eqc(xc)[log

(
qc(xc)∏
i∈c qi(xi)

)
]

is non-negative.
We will show that, under the conditions of the theorem,

infq∈P(x) L(q) > −∞. To see this, we can reformulate the
minimization of L as a convex optimization problem.

inf
q,mi∈V

Eq[− log p]−
n∑

i=1

H[mi]

subject to
q ∈ P(x)

∀i ∈ V, xi ∈ Xi,

∫
x−i

q(x) = mi(xi)

Using the method of Lagrange multipliers, we construct the
following dual optimization problem.

sup
gi∈V :gi∈P(Xi)

inf
x∈X

[
log

∏
i gi(xi)

p(x)

]
So, in order for L to be bounded from below, it suffices
that there exists a collection of densities, gi∈V , such that
supx∈X

p(x)∏
i gi(xi)

<∞.
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