
Inductive Logic Programming meets Relational
Databases:

Efficient Learning of Markov Logic Networks

Marcin Malec1, Tushar Khot2, James Nagy3, Erik Blask3, and
Sriraam Natarajan(�)1

1 Indiana University, Bloomington, Indiana mmalec,natarasr@indiana.edu
2 Allen Institute of AI

3 Air Force Research Laboratory

Abstract. Statistical Relational Learning (SRL) approaches have
been developed to learn in presence of noisy relational data by
combining probability theory with first order logic. While pow-
erful, most learning approaches for these models do not scale
well to large datasets. While advances have been made on us-
ing relational databases with SRL models [14], they have not
been extended to handle the complex model learning (structure
learning task). We present a scalable structure learning approach
that combines the benefits of relational databases with search
strategies that employ rich inductive bias from Inductive Logic
Programming. We empirically show the benefits of our approach
on boosted structure learning for Markov Logic Networks.

Introduction

Recently, a great deal of progress has been made in developing (probabilistic)
methods that can directly learn from relational data, in what is now known as
Statistical Relational Learning (SRL) or Probabilistic Logic Models (PLMs) [6,
18]. The advantage of PLMsis that they can succinctly represent probabilistic
dependencies among the attributes of different related objects, leading to a com-
pact representation of learned models while effectively modeling uncertainty.

While the combination is potent from a representation perspective, learning
is expensive. In particular, we consider the formalism of Markov Logic Net-
works where model learning has been pursued actively in recent times [1, 8, 9].
The key issue is the fact that as with standard Inductive Logic Programming
search different levels of abstractions (populations, sub-populations, individual
objects) must be explored. In addition, the weights need to be fixed for every
clause induced. Hence, many of the resulting approaches make limited assump-
tions to facilitate effective model learning. Some of these restrictions include the
finite domain assumption (Herbrand interpretations) 4, not allowing for functor

4 Some models such as Blog [12] allow for relaxing these assumptions but as far as we
are aware, they do not have a full model learning algorithm



symbols (i.e., learning only using predicates), not allowing for recursion etc. In
essence, most of these methods mainly exploit “parameter tying” i.e., allowing
for instances of objects to share the same parameters under the same conditions.

Consequently, PLM systems have been built using relational databases [19].
For example, more recently, a probabilistic database system called Tuffy [14],
has been developed for a particular SRL model called Markov Logic network [4].
It is an efficient database implementation that employs PostgreSQL under-
neath. This system has shown to have efficient parameter learning (learning of
weights) and has been extended to general factor graph learning [15]. However,
these systems are restricted to learning only the parameters of the underly-
ing models (weights/probabilities/potential functions) and not the full model
(rules/structure of graphical models).

Our hypothesis is that these data base systems can benefit from advances
inside ILP [10]. Recall that most systems employ additional directives, typically
called modes, to restrict the search space such that the learning of these clauses
is efficient. We propose to employ the success of ILP methods inside relational
databases to accelerate the full model learning of SRL models. Inspired by the
recent work on QuickFOIL [21], we employ the use of background knowledge
inside the database system used by Tuffy. The key difference to QuickFOIL is
that we are not just learning a set of rules but a set of weighted rules. To this
effect, we adapt the state-of-the-art MLN learning algorithm based on functional-
gradient boosting [7]. This boosting method has been shown to be effectively
learning MLNs across several domains and employs the use of modes to guide
the search space. We show that combining the scalability of a relational database
system with the effectiveness of mode-directed ILP learning will result in huge
performance gains compared to the best learning system.

We make the following key contributions: we consider the task of learning
SRL models effectively and propose a database solution for this task. We demon-
strate how the efficiency and effectiveness of the search space can be improved
by using background knowledge inside databases. We consider a powerful learn-
ing algorithm and show how it can be further improved by the use of databases.
Finally, we demonstrate empirically that the proposed ideas outperform the base-
line methods on several benchmark data sets.

Background

We first define some notations that will be used in this work. We use capital
letters such as X, Y, and Z to represent random variables (atoms in our formal-
ism). We use small letters such as x, y, and z to represent values taken by the
variables and bold-faced letters to represent sets.

Markov Logic Networks A Markov Logic Network consists of a set of formulas
in first-order logic and their real-valued weights, {(wi, fi)}. Each grounding of
a clause corresponds to a factor with the potential function exp(wi), leading to
the joint probability distribution, P (x) = 1

Z exp (
∑
i wini(x)), where ni(x) is the



number of times the ith formula is satisfied by x and Z is the normalization con-
stant. The weights of the rule can be interpreted as weights in Markov networks,
i.e., higher the weights, more likely is the rule to be true. Due to the exponen-
tial size of the normalization constant, most learning approaches maximize the
pseudo-loglikelihood given as PLL(X = x) =

∑
i logP (Xi = xi | MB(xi))

where MB(xi) is the Markov blanket of xi.

Boosting MLNs We employ relational functional gradient boosting (RFGB) ap-
proach developed for MLNs [7]. RFGB approach like Friedman’s boosting [5],
performs gradient ascent on the functional space. To do so, the probability dis-
tribution of each relational example, P (xi | MB(xi)) is represented as a sig-
moid over a regression function ψ(xi;MB(xi)). The gradients can be computed

on the pseudo-loglikelihood function w.r.t. the function ψ as ∂PLL(X=x)
∂ψ(xi;MB(xi))

=

I(xi = 1) − P (xi = 1;MB(xi)) which is the difference between the true distri-
bution (I is the indicator function) and the current predicted distribution. Hence
these gradients are positive for positive examples and negative for negative ex-
amples. RFGB starts with an initial function ψ0 defined over all the relational
examples (ground atoms) and computes the gradients for all the examples, ∆1.
A regression function, h1 : X → R is then learned to fit to these gradients and
added to the initial function i.e. ψ1 = ψ0 + h1. This process is repeated n times
and the final ψ function for an example is given as the sum of values from all
the gradient functions, ψn(x) = ψ0(x) + h1(x) + · · ·+ hn(x).

For MLNs, the regression function is ψ(xi;MB(xi)) =
∑
j wjntj(xi;MB(xi))

where ntj(xi;MB(xi)) corresponds to the non-trivial groundings [20] of an ex-
ample xi given its Markov blanket , ntj(xi;MB(xi)) = nj(xi = 1,MB(xi)) −
nj(xi = 0,MB(xi)). Relational regression trees or clauses can now be learned
to fit to these gradients. We focus on the learning regression clauses. Thus,
each gradient step (hn) is a regression clause and the final model ψn(x) =
ψ0(x) + h1(x) + · · ·+ hn(x) is a sum over the values returned by the regression
clauses. Note that learning these clauses would require computing the number
of groundings for every candidate clause.

Modes in ILP A mode definition for a predicate determines whether a particular
literal, say p(X) will be considered for addition to a clause. The three types of
modes considered here are:

– p(+) : the variable used as p’s argument must already appear in the clause.
E.g. p(X) and p(Y) would be considered for addition to q(Y) :- r(X, Y).

– p(-) : the variable used as p’s argument need not appear in the clause. E.g.
p(X), p(Y) and p(Z) would be considered for addition to q(Y) :- r(X, Y).

– p(#) : p’s argument needs to be a constant. E.g. p(c1),...p(cn) would be
considered for addition to q(Y) :- r(X, Y).

Learning Statistical Relational Models using Databases

We now present our proposed framework where we employ the use of in-memory
databases for learning relational rules with their parameters. First, we describe



the problem and then show how each component, that of specifying the back-
ground knowledge, the search over the space of hypothesis and the boosting
process itself is performed in the databases. We provide a standard SRL exam-
ple of smokes and cancer as a running illustration.

Problem Description

Given: Background knowledge (B), a set of propositional facts – evidence (F),
a set of positive (P) and negative examples (N) for a set of target predicates.

To Do: Use in-memory database to learn a discriminative MLN via RFGB.

Output: The set of learned weighed logic rules (horn clauses).
We used the database engine HyperSQL (HSQLDB) in embedded mode. We

will consider the following running example throughout the paper.
Illustrative Example: We consider the classic smokers-friends-cancer exam-

ple [4] which has facts about who smokes, and the list of friends. The goal is to
predict who will have cancer based on smoking status and social relationships.

Encoding Background knowledge

Recall that background knowledge of ILP consists of two components:

– Predicate definitions - the names of the predicates and the specification of
the domains for the predicate’s arguments

– Mode definitions - the rules for the predicate arguments in a candidate literal.

The modes serve to restrict the language and acts as an inductive bias to the
search process. Recall that our current system is inspired from the MLN boosting
method [7], a discriminative learning approach. The goal is to learn a set of
horn clauses and the modes essentially serve to describe the predicates in the
hypothesis Horn clauses. An important use of modes is that they serve to restrict
the use of existentially quantified variables in the learned horn clauses.

Illustrative Example: Returning to smokes-cancer example, the background
file declaration in logic format could look as follows:

predDef: friends(person, person).

predDef: smokes(person).

predDef: cancer(person).

mode: friends(+, -).

mode: friends(-, +).

mode: smokes(+).

mode: cancer(+).

As with standard ILP systems, the use of modes in our learning algorithm can
be clearly seen in Figure 1. The current learning task is to predict Cancer(X)
(green node in the center). The modes restrict our next expansion search space
to the nodes shown in green. As can be seen due to the use of + in Smokes
predicate, we only consider Smokes(X) for expansion and not a new existential



Fig. 1. Mode search space reduction.

variable say Smokes(Y ). Similarly, some of the friends of X must be introduced
into the search space before considering their friends and their smoking habits.
These constraints are key for ILP systems to work efficiently and we adapt them
in the context of learning with databases.

Facts
We now show how the facts and the positive and negative examples are encoded
in our work. Following prior work in SRL, we make the closed-world assumption,
i.e., all the groundings that are not specified in the fact base (unobserved ground-
ings) are false. All the true facts are stored in the database with each predicate
corresponding to one table and each argument of the predicate corresponding to
a column in the table.

In the case of target predicates we use an additional column that contains the
truth value of the grounding. Since we are learning a MLN, the MLN semantics
requires us compute PSUM (ΣiSATcounti(x)× clauseWeighti) for each exam-
ple which is stored as an additional column. This is essentially a sum over the
weighted count of the number of satisfied groundings of each clause. Recall that
we are performing functional gradient descent, and hence we also need to com-
pute the gradients (Truth-value − sigmoid(PSUM)) for each example. Finally,
given the need to compute the difference between the number of satisfied and
unsatisfied groundings in the gradient, we also store the negative facts. In our
experiments, PSUM is initialized to −1.8 (as an initial prior as it was suggested
in the work of Khot et al [7]). In the next section, we show how the facts and
background knowledge of the smokers example is fully encoded in our database.

Illustrative Example: Let us consider the task of predicting cancer. Let the
true facts for this domain be as follows:

smokes(chuck) friends(bob, chuck) cancer(bob)
smokes(bob) friends(bob, dan) cancer(chuck)

friends(chuck, bob) cancer(fred))
friends(chuck, fred)
friends(dan, bob)
friends(fred, chuck)

These facts would be stored inside the database as shown in Figure 1 (left).
As can be seen, the groundings of the Cancer predicate (which is the query
predicate) are stored as a table with the log priors given as PSUM. The gradients



atom Cancer

Truth PSUM G ARG0

1 -1.800 0.858 bob
1 -1.800 0.858 chuck
1 -1.800 0.858 fred
0 -1.800 -0.142 dan

atom Friends

ARG0 ARG1

bob chuck
bob dan

chuck bob
chuck fred

dan bob
fred chuck

atom Smokes

ARG0

chuck
bob

Fig. 2. Representation of facts and positive examples in data bases.

are essentially the initial values based on the priors and these are stored in the
table as well. They will be modified through the learning process with the aim
of driving them to 0.

Given that the positive and negative examples are stored as tables, now the
rest of the facts are captured using the friends and smokes tables as shown in
Figure 1 (center & right). Finally, the gradient G is computed using the query:

Update atom_Cancer SET G = truth - (1.0 / (1.0 + exp(-PSUM)))

This is the initial value of the gradient which is computed using the truth
value (1 for true and 0 for false grounding )and the prior weight (PSUM). We
now turn our attention to implementing the ILP search.

ILP search using databases

The search begins with a horn clause with head being the target. The database
representation of the initial clause would consist of a view K that corresponds
to the groundings of the initial clause with column names changed to variables.

The next step is to calculate the score of the clause. This is one of the steps
where querying a database can be extremely useful. First, we filter out clauses
that cover too many or too few examples as they would be not discriminative.
In our experiments, we filtered clauses that covered or ignored 97.5% of the
examples. For the accepted clauses, a table I is created which contains positive
satisfiability counts for the groundings of the head atom. The entries in the table
are populated using the following query:

Select count(*), head’s vars group by head’s vars

To compute the weight we would join the I table with the target table to link
the gradient values, and then do the computation using aggregate functions:

weight = Select sum(G * SAT) / sum(SAT * SAT) FROM I inner join atom_target

on var1 = arg0 ...

The next step would be to compute the score using an outer join:

score =- Select sum(Power((SAT * weight - G), 2)) FROM I right outer

join atom_target on var1 = arg0...

Illustrative Example: Returning to the the task of modeling cancer, to expand
the initial clause to include Smokes(X), we use the following queries:

Entries in I table: Select count(*), var1 group by var1



weight = Select sum(G * SAT) / sum(SAT * SAT) FROM I inner join atom_cancer

on var1 = arg0

score =- Select sum(Power((SAT * weight - G), 2)) FROM I right outer

join atom_cancer on var1 = arg0

The entries in the I table are then: I table
SAT var1
1 bob
1 chuck

This process would be repeated for every candidate literal, and then for each
of the resulting clauses limited using beam search. The best clause found using
such search would then be added to the model. Once a clause is added to the
model its I table’s SAT counts and clausal weight are used to update the PSUM
values of the head’s atom table. Then the gradient values are recomputed.

Fig. 3. Use of partitions.

Use of Modes: To generate the reduced set of candidate literals all com-
bination of atoms are generated with restriction that domain of each pred-
icate argument is limited to existing variable if + is specified, and existing
variable and possible new variables if - specified, or constants if # is speci-
fied. These are stored in a set to eliminate duplicates. For the cancer task,
the candidate literals considered in the first gradient step would only include
〈Smokers(X), F riends(X,Y ), F riends(Y,X)〉. To speed-up the search each gra-
dient step is limited to expanding only 10 best clauses in each gradient step. Fi-
nally, the SAT counts remain the same across gradient iterations, so the I tables
are not reused if the same clause is to be reevaluated.

The conversion to the database format allows for efficient query and retrieval
of the data. This in turn allows for counting the satisfied groundings of any
clause efficiently. As has been shown before[17], counting the satisfied grounding
is the bottleneck in many PLM tasks including learning and inference. Efficient
grounding could possible allow for improving the speed of these tasks.

It must be mentioned that our efficiency does have some limitations - (1) we
assume a finite set of groundings (possibly a large set but a finite set). (2) Only
horn clauses can be learned using our method and (3) We make the closed-world
assumption to perform counting efficiently. However, we argue and show empir-
ically that these assumptions are practically useful in many PLMs. Particularly,



the state-of-the-art learning method for MLNs make these assumptions but is
built on a java-based system. We replace the java system with our database
system and show significant efficiency gains without losing the performance.

Partitioning Candidate Literals: We partition the candidate literals into
groups in which members of the same group share a common join. The idea is
to do the shared join only once to speed up the learning time. An example of
partitioning is shown in Figure 3.

Function MLN Boost(Data)
for 1 ≤ m ≤M do

Fm := Fm−1

for P in T do
S := GenExamples(Data;Fm−1, P )
∆m := FitRelRegressClauseDB(S, P,N,B)
Fm := Fm +∆m

end

end

Function FitRelRegressionClauseDB((S, P, N, B))
Beam := {P (X)}
BC := P (X)
while ¬ empty(Beam) do

Clause := popFront(Beam)
if length(Clause) ≥ N then

continue
end
C := getCandidateLiterals(Clause)
Q := getPartitions(C)
QCounts = getCountsUsingJoins(Q, Clause)
CCounts := evaluateClauses(P,C,Counts)
for c ∈ C do

c.score = SE(c,CCounts(c), S)
if c.score ≥ Clause.score then

insert(Beam, c, c.score)
end
if c.score ≥ BC.score then

BC := c
end

end
while length(Beam) ≥ B do

popBack(Beam)
end

end
return BC

Algorithm 1: MLN-Boost Algorithm

Algorithm for learning MLNs: Algorithm 1 describes our approach ap-
plied to boosting MLNs [7]. MLN Boost function presents the boosting approach
as described by Khot et al. [7]. We first generate the regression examples based



on the gradients described earlier and learn regression clauses to fit these gradi-
ents. We change the regression clause learner to use our database representation
in FitRelRegressionClauseDB.

We use the standard beam search to search over the space of candidate
clauses. The parameter N specifies the maximum length of the learned clauses
(set to 3 in our experiments) and B specifies the beam size (set to 10). To
compute the score of the candidate literals, we first compute the partitions of the
literals being considered in getPartitions. We use database queries to get the
counts of the partitions joined with the current clause in getCountsUsingJoins.
Finally given these counts over the partitions, we can compute the counts of each
example for every candidate literal (evaluateClauses). These counts can then
be used to compute the squared error (SE) while scoring literals during search.

Empirical Evaluation

We now present the results of using our approach on standard benchmark SRL
data sets. We aim to evaluate the following questions:

– (Q1) Does the proposed database based SRL system outperform the baseline
in terms of learning time?

– (Q2) Does the proposed system sacrifice learning performance for efficiency?

Since we are in relational domains, it is well-known that most of the relations
are false - i.e., negative examples far outnumber the number of positives. In
such cases, it has been frequently observed that other measures such as Area
under the Precision-Recall curve (AUC-PR), Area under Receiver Operating
Characteristic curve (AUC-ROC) are considered more reasonable alternatives.
Hence, we primarily focus on three performance measures - AUC-ROC and AUC-
PR for measuring the performance efficacy and the time in seconds for measuring
efficiency. Further, for Cora, IMDB and WebKB datasets we have subsampled
the negative examples at each gradient step during learning to be twice in number
as the number of the positive examples. Our hypothesis is that our system can
match the state-of-the-art learning algorithm in learning an accurate model in
significantly faster time. We consider the following approaches:

1. BoostR - WILL based MLN boost algorithm, that serves as our reliable
baseline.

2. DB Boost NM - Database powered MLN boost without modes, that serves
as our DB baseline. This system searches exhaustively for the horn clauses.

3. DB Boost - Database powered MLN boost that caches join results.

Smokers

AUC-ROC AUC-PR Time(s)
BoostR 1.0 1.0 2.002
DB Boost NM 0.5 0.6 2.196
DB Boost 1.0 1.0 0.376

Smokers is a popular syn-

thetic testbed that is used by several SRL methods for evaluation [4, 7, 13]. It
consists of 3 predicates: Smokes, Friends, and Cancer. We chose cancer to be



our target, our train domain had 6 people, and our test domain had 8 people.
Being a small domain, we do not expect significant improvement in run times.
However, as can be observed, the database boosting method that uses modes is
still thrice as fast as the baseline method with the same AUC.

Cora Entity Resolution

AUC-ROC AUC-PR Time(s)
BoostR 0.521 0.141 804.877
DB Boost NM - - > 7200
DB Boost 0.511 0.157 13.030

The Cora dataset, now a standard dataset for citation matching, was first
created by Andrew McCallum, later segmented by Bilenko and Mooney [2],
and fixed by Poon and Domingos [16]. In citation matching, a group is a set of
citations that refer to the same paper, and a nontrivial group contains more than
one citation [16]. The Cora dataset has 1, 295 citations and 134 groups where
almost every citation in Cora belongs to a nontrivial group; the largest group
contains 54 citations. It contains the predicates: HasWordAuthor, HasWordTitle,
HasWordVenue, Title, Venue, Author.

We performed 5-fold cross-validation, and we record average time over the
5 folds. Without the use of modes the database boost algorithm search was
not making much progress and we have terminated it at 2 hours. As with the
previous experiments, it can be observed that the learned models of our approach
exhibit the same prediction performance with databases as that of the original
BoostR system. This answers Q2 by showing that we do not sacrifice learning
performance while still being significantly faster than the original system.

IMDB

AUC-ROC AUC-PR Time(s)
BoostR 0.986 0.527 27.741
DB Boost NM 0.508 0.147 4525.743
DB Boost 0.985 0.513 3.432

The IMDB dataset was first used by Mihalkova and Mooney [11] and contains
five predicates: actor, director, genre, gender and workedUnder. Since gender
can take only two values, we convert the gender(person,gender) predicate to a
single argument predicate female_gender(person). Following prior work [7],
we omitted the four equality predicates. We performed five-fold cross-validation
using the folds generated by Mihalkova and Mooney to build model for the target
workedUnder and we record average time over the 5 folds.

In this data set, both systems achieve comparable AUC-ROC. However, the
database based system seem to have a significantly higher AUC-PR. This is due
to improved recall. Investigating the cause of this improvement is an important
research direction. In terms of learning time, both systems are fast. However,
the proposed system is still marginally faster than the original boostR system.

WebKB

AUC-ROC AUC-PR Time(s)
BoostR 0.932 0.038 4.161
DB Boost NM - - > 7200
DB Boost 0.936 0.039 1.221



The WebKB dataset was first created by Craven et al. [3] and contains infor-
mation about department webpages and the links between them. It also contains
the categories for each webpage and the words within each page. This dataset
was converted by Mihalkova and Mooney [11] to contain only the category of
each webpage and links between these pages. They created the following pred-
icates: Student(A), Faculty(A), CourseTA(C, A), CourseProf(C, A), Project(P,
A) and SamePerson(A, B) from these webpages. The textual information was
ignored. We removed the SamePerson(A, B) predicate as it only had ground-
ings with both the arguments being exactly same (i.e., SamePerson(A,A)). We
evaluated our method over the CourseProf predicate. We performed 4-fold cross-
validation where each fold corresponds to one university, and we record average
time over the 4 folds. Without the use of modes the database boost algorithm
search was not making much progress and we have terminated it at 2 hours.
It can be observed that the AUC-ROC and AUC-PR are comparable with the
BoostR system for the different database systems. However, the proposed system
is significantly faster than the original while learning a comparable model.

Discussion: In summary, it can be clearly observed that the proposed
database based systems that uses modes are significantly faster than the origi-
nal BoostR system. However, this performance is achieved without significantly
losing learning accuracy. Hence, Q1 can be answered affirmatively in that the
proposed methods are significantly faster than the state-of-the-art baseline. Q2
can be answered negatively in that we do not sacrifice learning performance for
improved learning time.

Conclusion and Future Work

We considered the problem of scaling up a successful boosting algorithm for
SRL models. To this effect, we designed a in-memory database solution that
exploited the search bias used in many logical models. Our initial evaluations
clearly demonstrate that this learning system is capable of learning accurate
models in significantly shorter amount of time. Extensive evaluations of this ap-
proach is our next immediate direction for future research. Employing approxi-
mate counts for the groundings will potentially allow for even greater savings in
time. However, these approximations need to be theoretically analyzed for the
learning performance, another interesting research direction. Finally, embedding
the powerful learning approach such as boosting inside a large-scale system such
as DeepDive will allow us to fully realize the gains attained in related fields.

Acknowledgements: MM and SN acknowledge the support of the DARPA
DEFT Program under the Air Force Research Laboratory (AFRL) prime con-
tract no. FA8750-13-2- 0039. Any opinions, findings, and conclusion or recom-
mendations expressed in this material are those of the authors and do not nec-
essarily re ect the view of the DARPA, ARO, AFRL, or the US government.

References

1. Biba, M., Ferilli, S., Esposito, F.: Structure learning of Markov logic networks
through iterated local search. In: ECAI (2008)



2. Bilenko, M., Mooney, R.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: KDD (2003)

3. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K.,
Slattery, S.: Learning to extract symbolic knowledge from the World Wide Web.
In: AAAI. pp. 509–516 (1998)

4. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan &
Claypool, San Rafael, CA (2009)

5. Friedman, J.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29 (2001)

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press
(2007)

7. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks
via functional gradient boosting. In: ICDM (2011)

8. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph
lifting. In: ICML (2009)

9. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs.
In: ICML (2010)

10. Lavrac, N., Dzeroski, S.: Inductive logic programming - techniques and applica-
tions. Ellis Horwood series in artificial intelligence, Ellis Horwood (1994)

11. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising markov logic net-
works for transfer learning. In: Proceedings of the 22nd national conference on
Artificial intelligence - Volume 1 (2007)

12. Milch, B., Marthi, B., Russell, S.: Blog: Relational modeling with unknown objects.
In: Proceedings of the SRL Workshop in ICML (2004)

13. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: The Relational Dependency Network
case. MLJ (2012)

14. Niu, F., Zhang, C., Re, C., Shavlik, J.: Scaling inference for markov logic via dual
decomposition. In: ICDM. pp. 1032–1037 (2012)

15. Niu, F., Zhang, C., Ré, C., Shavlik, J.: Deepdive: Web-scale knowledge-base con-
struction using statistical learning and inference. Second Int.l Workshop on Search-
ing and Integrating New Web Data Sources (2012)

16. Poon, H., Domingos, P.: Joint inference in information extraction. In: AAAI. pp.
913–918 (2007)

17. Poyrekar, S., Natarajan, S., Kersting, K.: A deeper empirical anal-
ysis of CBP algorithm: Grounding is the bottleneck. In: Statisti-
cal Relational Artificial Intelligence, Papers from the 2014 AAAI
Workshop, Québec City, Québec, Canada, July 27, 2014 (2014),
http://www.aaai.org/ocs/index.php/WS/AAAIW14/paper/view/8776

18. Raedt, L.D., Kersting, K.: Probabilistic logic learning. SIGKDD Explor. Newsl.
5(1), 31–48 (Jul 2003)

19. Schulte, O., Qian, Z.: SQL for SRL: structure learning inside a database system.
CoRR abs/1507.00646 (2015)

20. Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by
preprocessing to reduce the size of the resulting grounded network. In: IJCAI
(2009)

21. Zeng, Q., Patel, J.M., Page, D.: Quickfoil: Scalable inductive logic programming.
Proc. VLDB Endow. 8(3) (Nov 2014)


