
Graph-based Approximate Counting for Relational Probabilistic Models
Mayukh Das

School of Informatics & Computing
Indiana University
Bloomington, IN

Yuqing Wu
School of Informatics & Computing

Indiana University
Bloomington, IN

Tushar Khot
Allen Institute of AI

Seattle, WA

Kristian Kersting
Dept. of Knowledge Discovery

Technical University of Dortmund
Germany

Sriraam Natarajan
School of Informatics & Computing

Indiana University
Bloomington, IN

Abstract

One of the key operations inside most relational proba-
bilistic models is counting - be it for parameter/structure
learning or for efficient inference. However, most ap-
proaches use the logical structure for counting and do
not exploit any fast counting methods. In this work-in-
progress, we explore the closer connections to graph
data bases and propose methods that obtain both exact
and approximate counts effectively. We demonstrate the
efficiency in the task of parameter learning.

Introduction
Statistical Relational AI (Getoor and Taskar 2007) deals
with the problems of learning and inference in the presence
of rich, structured multi-relational data. A key operation re-
quired by most if not all StaRAI models is counting. For
instance, Markov Logic networks (MLNs) (Domingos and
Lowd 2009) use counting as their fundamental operation in
computing posterior probabilities. Similarly, most directed
models that employ a combination function such as mean or
weighted mean (Natarajan et al. 2009) use counts. Finally,
most lifted inference methods (Singla and Domingos 2008;
Van den Broeck et al. 2011; Poole 2003; Kersting, Ahmadi,
and Natarajan 2009; Ahmadi, Kersting, and Hadiji 2010;
de Salvo Braz et al. 2009; Milch et al. 2008) that aim to rea-
son at a high-level as much as possible by exploiting sym-
metries also consider counts of the objects in each group to
compute the final posteriors.

However, since the counts are primarily used in expo-
nents of different functions (be it the log-linear function of
MLNs or the products in lifted inference methods), comput-
ing exact counts appears to be an overkill. This is particu-
larly true because most systems are logic-based and count-
ing is one of the most expensive operations, more so, since
counting all possible words is a major bottleneck. In many
cases, the exact count of the groundings is not necessary.
For instance, intuitively, it should not matter (to an inference
algorithm) whether a particular Professor has co-authored
approximately 500 publications or exactly 519 publications
when answering a query about the success of this Professor
since the number is high anyway.

Our hypothesis (which we verify empirically) is that per-
forming approximate counting can allow for high efficiency
gains with a small loss of performance. To this effect, we

exploit the progress in the graph databases and graph the-
ory (Metzler and Miettinen 2015; Castellana et al. 2015;
Lichtenwalter and Chawla 2012; Pan 2009; Zou et al. 2011;
Sun et al. 2012) to perform fast, approximate counting over
query structures that can be performed in relatively short
time. More specifically, we compile our logical model to
a graph/network represented in resource description frame-
work (RDF) format. This equivalent model allows for both
approximate and exact counts to be performed in a frac-
tion of time that is required by the original logical model.
We first show how the logical model can be converted to
an equivalent graph representation. Then, we present the ex-
act computation algorithm that simply counts sub-graphs via
queries. We then outline an approximation method (simi-
lar to messaging passing methods for probabilistic graphi-
cal models) that uses summary statistics (expected values)
based on in-degrees and out-degrees to estimate the counts.
Our approach, conceptually, bears resemblance to the work
by (Venugopal, Sarkhel, and Gogate 2015), which achieves
efficiency via counting only the satisfied groundings (simi-
lar to counting paths in an equivalent graph); however, the
difference lies in the ability of our method to count non-
existent paths (unsatisfied groundings) as well. Finally, we
demonstrate the effectiveness and efficacy of the proposed
counting approach on a learning method employed in sev-
eral standard benchmark data sets.

To summarize, we make the following key contributions:
(1) We first present a compilation strategy based on graph
data bases for relational probabilistic models. (2) In addi-
tion to compilation, we show how to perform counting (from
exact to approximate) on such graph structured data. (3) Fi-
nally, we perform an initial evaluation on several standard
data sets in the task of learning parameters (that involve pa-
rameter tying across instances). Extending this evaluation
rigorously and showing the potential for speeding up stan-
dard lifted inference techniques remains an interesting di-
rection of future research.

Background & Related Work
Approximation of counts via summaries is closely related
to cardinality/selectivity estimation and has been deeply
studied in relational databases (Schiefer, Strain, and Yan
1998) using histogram based summaries (Matias, Vitter, and
Wang 1998; Seputis 2000) or VC dimension based meth-

ods (Riondato et al. 2011). It has also been studied in the
context of Graph databases (Neumann and Moerkotte 2011;
Stocker et al. 2008). Some key definitions:

Property Graph (Model) (Corby, Dieng, and Hébert 2000)
is a model of representing graph structured data effectively
and efficiently, where every edge E = 〈v1, v2〉 is denoted as
a triple 〈subject, predicate, object〉, such that, subject =
v1, object = v2 and predicate = label(E). Conceptually,
predicate is property of the subject, and object is its value.

Resource Description Framework (RDF) (Pan 2009;
Corby, Dieng, and Hébert 2000) is a language/framework
to represent a property graph where everything – sub-
ject, predicate or object is a resource, with a namespace
binding. The namespace has to be valid URI. Example:
〈http://example.org/Anna〉 which could be a subject or and
object or 〈http://example.org/Friends〉 which is a predicate.

SPARQL (PrudHommeaux, Seaborne, and others 2008) is
a query language for querying on RDF data. It is different
from SQL, in that the subgraph we wish to query is encoded
in the WHERE part of the query as connected triples.

SELECT * FROM Gf WHERE {?a Friends ?b. ?b Hates ?c}

Graph-Based Approximate Counting
We now present how statements/formulas in first order pred-
icate logic (FOL) can be represented, both intuitively and
easily, as a “property graph/network”. The underlying obser-
vation is that satisfiability of formulas in FOL can be posed
as determination of the existence of a particular path in the
graph. We first present the equivalent representation before
outlining the counting algorithms.

Equivalent Representation
Predicates (either partially/fully grounded or ungrounded)
are used to construct a property graph (G). The arguments of
the predicate become the nodes of G and the predicate itself
becomes a directed edge inG with the name of the predicate
as its label. The direction of the edge is determined by the
order of the arguments of the predicate. This is motivated
by the fact that predicates express relation between two or
more entities or at times a property of an entity, viewed as a
reflexive relation of an entity with itself.

Consider, any predicate pred(A1, A2). The arguments
A1&A2 are added to the set of nodes, N in G. E = A1 →
A2 is a directed edge from A1 to A2 in the set of edges, E
and label(E) = pred. Thus, G = (N , E). We now present
different cases of pred.

- Unary Predicates: For unary predicates (pred(Ai)), the
directed edge will be a ‘self-loop’, i.e., E = Ai → Ai ∈
E. This is illustrated in Figure 1(a).

- Binary Predicates: This is the straightforward case. For
pred(A1, A2), the two nodes A1 and A2 have a directed
edge E = A1 → A2. See Figure 1(b).

- N-ary Predicates: The more general case can be han-
dled by converting the N-ary to N − 1 binary predi-
cates as is done with most formalisms. Thus, for predicate
pred(A1, A2, A3), we construct two edges E1 = A1 →
A2 and E2 = A2 → A3 (Figure 1(c)), both the edges

having the same label. Note that this can introduce some
spurious relations (Kersting and De Raedt 2007) but with
large amounts of data, this serves as a reasonable approx-
imation (as we show later).

(a)
Unary

(b) Binary

(c) N-ary

Figure 1: Handling Arity

To summarize, given a set of facts (evidence) Fev =

{predi(Ai1, Ai2, . . . , Aij)}Ki=1 where K is the size of the
evidence (number of given facts) and j ≥ 1 (value of j is
the Arity of predicate predi), we construct a corresponding
evidence graph Gev of size O(K ∗ |A|). We use the standard
“Smokes-Friends-Cancer” problem (Domingos and Lowd
2009) and demonstrate the graph construction in Figure 2.
As can be observed, Smokes(Anna) and Cancer(Gary)
are both unary predicates and hence are self-loops while oth-
ers are directed edges. As another example, for the facts

Figure 2: Smokes Friends Graph

presented below, the equivalent graph is shown in Figure 3.

author(“class 7”, “author blum a ”).
author(“class 8”, “author blum a ”).
author(“class 9”, “author blum a ”).
title(“class 7”, “TITLE A”).
title(“class 8”, “TITLE A”).
title(“class 9”, “TITLE B”).
venue(“class 7”, “venue1”).
venue(“class 8”, “venue2”).
venue(“class 9”, “venue3”).
haswordauthor(“author blum a ”,“word a”).
haswordauthor(“author blum a ”,“word blum”).

Algorithm 1 presents the creation of the evidence graph
and Algorithm 2 presents the summarization of the evi-
dence graph. The key idea is to use these summary statistics
(in-degrees and out-degrees) to estimate the counts of the
queries as demonstrated later.

Figure 3: Equivalent Property Graph

Algorithm 1: createEvidenceGraph()
Data: Evidence File F
Result: Evidence Graph Gev

1 Initialization: Empty Evidence Graph Gev = {}
2 Empty Triple Store τ
3 for each grounded predicate P = p(A1, A2, . . .) in F do
4 Parse P
5 Edge E ← p
6 if P is unary then
7 Subject NodeNs ← A1

8 Object NodeNo ← Ns [Self loop]
9 else

10 if P is binary then
11 Subject NodeNs ← A1

12 Object NodeNo ← A2

13 else
14 Split n-ary into n binary predicates and process
15 end
16 end
17 New Triple T← 〈Ns, E ,No〉
18 Add T to Gev and commit Gev to τ
19 end
20 return Gev

Obtaining Counts

We now explain how to perform counting given the sum-
mary statistics of the graph. We observe that this is equiv-
alent to counting subgraphs in a heterogeneous network
while satisfying certain constraints. To understand this bet-
ter, consider the Smokes-Friends-Cancer example Figure 2.
For simplicity, let us assume the following clause:

Smokes(a1) ∧ Friends(a1, a2)

Now to calculate the number of satisfiable groundings of this
clause, we count the subgraphs(motifs) that have the struc-
ture presented in Figure 4(a). Hence, the goal is to count the
number of subgraphs/motifs in the Smokes-Friends-Cancer
network given in figure 2. The given structure becomes the
constraint on the counting task, i.e., the goal is to count sub-
graphs that satisfy this constraint. Figure 4(b) presents an
example of this structure given the two groundings of the

Algorithm 2: summarize()
Data: Evidence Graph Gev
Result: Summary statistics in a set of Hash data structures

{Hin, Hout}
1 Initialize {Hin, Hout} as empty structures;
/* ---- Calculate and store in-degree

summary of every Node ----- */
2 Query ← “SELECT {count(?s) as ?cnt} ?p ?o from Gev

WHERE {?s ?p ?o} GROUP BY ?p ?o”;
3 ResultSet Rs ← execute(Query,Gev);
4 for each 〈cnt, p, o〉 ∈ Rs do
5 put(Hin, 〈o, 〈p, cnt〉〉);
6 end
/* --- Calculate and store out-degree

summary of every Node --- */
7 Query ← “SELECT ?s ?p {count(?o) as ?cnt} from Gev

WHERE {?s ?p ?o} GROUP BY ?s ?p”;
8 ResultSet Rs ← execute(Query,Gev);
9 for each 〈s, p, cnt〉 ∈ Rs do

10 put(Hout, 〈s, 〈p, cnt〉〉);
11 end
12 return Hin, Hout

above clause (with, Bob and Ed being friends of Anna).

1 : Smokes(Anna) ∧ Friends(Anna,Bob)
2 : Smokes(Anna) ∧ Friends(Anna,Ed)

(a) First Order Clause

(b) SubGraphs satifying the
clause

Figure 4: FO-Clause and equivalent subgraph counting

Exact Counting Given that we have mapped the counting
of satisfied groundings to subgraph counting, exact count-
ing can be performed in a relatively straightforward man-
ner. To this effect, we represent the property graph as an
RDF (mentioned earlier). Now, exact counting requires sim-
ply retrieving all the subgraphs matching the motif or the
pattern induced by a clause as shown above in Figure 4 and
then enumerating and counting them thereafter. This can be
achieved by a straightforward SPARQL query (an SQL-like
query language designed for querying on Graph data repre-
sented via RDF) as shown below.

For the clause Smokes(a1)∧Friends(a1, a2), the query
to return all the subgraphs is as follows:

PREFIX namespace:<http://example.org/>
SELECT ?a1 ?a2 FROM Evidence_Graph
WHERE {?a1 namespace:Smokes ?a1.

?a1 namespace:Friends ?a2}

This query will return all the subgraphs present in the evi-
dence graphGev which can then be counted. In the SPARQL
query, the variables are denoted with a ? before its name. All
the constraints (here parameterised first order predicates) are
encoded in the query in the “WHERE” part of the query.
Once all possible subgraphs in the evidence graph are re-
turned into a result set Rs = {g(1)

s , g
(2)
s , . . .}, the size of

result set n(Rs) is the count value.
While this is straightforward, we have just essentially

converted one exponential problem to another one, since
sub-graph matching is already a hard problem, which might
be relatively faster to compute due to progress database tech-
nology, especially graph databases. Hence, we now present
an approximation method that can be more tractable for
queries that employ large evidence.

Approximate counting Our key intuition remains the
same – a clause is equivalent to a pattern and our goal is to
search for that pattern in the evidence graphGev as shown in
Figure 4. The key strategy to obtain this count approximately
is to use the summary statistics collected via the summarize()
procedure in Algorithm 2.

Inspired by the success of message passing algorithms
in probabilistic graphical models, we develop an algorithm
that uses augmented count values from summary statistics
as messages. To understand this, consider the clause:

pr1(a1, a2) ∧ pr2(a3, a2) ∧ pr3(a2, a4)⇒ h(a2) (1)

The equivalent graph for the body of the clause is shown in
Figure 5

Figure 5: Graph for body of clause in eqn 1

We define a few notations first,

• Inpr(c) is the in-degree of a node with constant c present
in Gev with respect to edges with predicate pr. (Eg: In
Figure 2, InFriends(Ed) = 1).

• Outpr(c) is the out-degree of a node with constant c
present in Gev with respect to edges with predicate pr.
(Eg: In Figure 2, OutFriends(Anna) = 2).

• In(avg)
pr is the average in-degree of all nodes that have in-

coming edge E with label(E) = pr. Hence In(avg)
pr =∑N

i Inpr(vi)

N .

• Out(avg)
pr is the average out-degree of all nodes that have

incoming edge E with label(E) = pr. Hence Out(avg)
pr =∑N

i Outpr(vi)

N .
• Θ(v) or type Count is the number of constants possible

(given by the evidence) for variable v. So for parameter-
ized predicate pr(v), if the structure of the predicate is
pr(typeA), i.e., the argument of the predicate is of type
typeA then Θ(v) = n(typeA).

• µpr
vi→vj is the message transmitted from variable vi to

variable vj over edge pr.
• Gq is the query graph, or the graph formed by the for-

mula/clause for which we are counting.
Next we will first describe the process informally, and
present the algorithm.

(a) Initialization

(b) Next step

(c) Final step

Figure 6: Approx Counting

We start with the assumption that at least one of the vari-
ables is tied to a constant, that is, the counts are obtained
against one example (in our case let us assume that the vari-
able a2 is tied to an appropriate constant). With this as-
sumption, we first initialize the counts of each variable, in
the graph formed by the body of the clause that we have in
Figure 5. As the variable a2 is tied to a constant its count
is assumed to be 1 and all other variables are initialized to
their type counts, Θ(v). This is illustrated in figure 6(a). At
the initial state, count(a1) = na1 = Θ(a1), count(a2) =
1 [∵ a2 is a constant], count(a3) = na3 = Θ(a3) and
count(a4) = na4 = Θ(a4) (Constant tying is not essen-
tial, and has been done to demonstrate how the counts vary
with examples. However, if not required, then all variables
are simply initialized to their ”typeCounts”).

Given that the graph is initialized, we will demonstrate
how the message passing occurs here. One important factor
here is that, the graph is directional hence the order of the
variables (for variable elimination) is a trivial choice. The
variables (nodes) that have no incoming edges in the query
graph Gq are the starting points and the rest of the order is
immaterial. Thus, in our example we start with a1 and a3
and messages are passed from these nodes to the node a3
[µpr1

a1→a2 from a1 to a2 and µpr2
a3→a2 from a3 to a2] as dis-

played in Figure 6(b). The messages are augmented counts:

µpr1
a1→a2 =

Out
(avg)
pr1

Θ(a2)
.
Inpr1(C)

Θ(a1)
.na1 (2)

The expression
Out

(avg)
pr1

Θ(a2) gives us the ratio of the average out-
going edge to the maximum number of possible outgoing
edges, with predicate pr1 in this case. Inpr1(C)

Θ(a1) is a simi-
lar expression for the case of incoming. Their product gives
us a heuristic that is representative of our belief about the
presence of this predicate in the Gev , which we then use to
augment the count. Again the message µpr2

a3→a2 is obtained
as,

µpr2
a3→a2 =

Out
(avg)
pr2

Θ(a2)
.
Inpr2(C)

Θ(a1)
.na3 (3)

Now, the count value of a2 is updated. Note how the
mean/average of in-degree is not considered here, since the
variable a2 is tied to an example (constant C).

n
(new)
a2 =

∏
(v,pr)∈{(a1,pr1),(a3,pr2)}

µpr
v→a2.(n

(old)
a2 = 1) (4)

Finally another message µpr3
a2→a4 is passed from a2 to a4

as shown in figure 6(c). The message is as shown below:

µpr3
a2→a4 =

Outpr3(C)

Θ(a4)
.
In

(avg)
pr3

Θ(a2)
.n

(new)
a2 (5)

Updating the count of a4 works in a similar fashion as
shown in Equation 4. Due to reasons mentioned earlier,
mean/average out-degree is not considered (in Eqn 5), in-
stead the out-degree of the exact constant node is used.

Given n(new)
a4 is the final count we want since that is the

only variable left after eliminating the rest, which is an ap-
proximate estimate of the number of subgraphs present in
Gev . Formal algorithm is given in Algorithm 31.

Pre-process: Call methods createEvidenceGraph(F)
(Algorithm 1) to get the evidence graph Gev and call
summarize(Gev) (Algorithm 2) to get the summary data
structures H = {Hin, Hout, H

(avg)
in , H

(avg)
out } at the begin-

ning of any inference or learning system.

Discussion There are a few important things to note.
Firstly, with Closed World assumption, absence of an edge
denotes, the negation of a predicate. Otherwise, negated

1Note: In Algorithm 3 parse() is just a name given (for the ease
of representation) to the operation of parsing an FOL clause into a
query graph as shown in Equation 1 and Figure 5

Algorithm 3: approxCount()
Data: Clause C,H , example constant C for one of the

variables
Result: Approximate count cnt

1 Initialize: Build Gq ← parse(C);
2 Start with nodes with no incoming edge in Gq;
3 V ← {v : v ∈ Gq};
4 for each variable v ∈ Gq do
5 for each x ∈ Gq , s.t. ∃pr(x, v) do
6 if v = C (constant) then

7 µpr
x→v ←

Out
(avg)
pr

Θ(v)
.
Inpr(C)

Θ(x)
.nx;

8 end
9 else if x = C (constant) then

10 µpr
x→v ←

Outpr(C)

Θ(v)
.
In

(avg)
pr

Θ(x)
.nx;

11 end
12 else

13 µpr
x→v ←

Out
(avg)
pr

Θ(v)
.
In

(avg)
pr

Θ(x)
.nx;

14 end
15 end
16 n

(new)
v ←

∏
{(xi,pr(xi,v))}i µ

pr
x→v.nv;

17 if sizeOf(V) = 1 then
18 cnt← nv;
19 break;
20 end
21 V ← V − {v};
22 end
23 return cnt

form of the predicate becomes the label of an edge in the
evidence graph. Secondly, for a self loop, degree summary
is either 1 or 0, while N-ary predicates that have been con-
verted to multiple binary ones behave as ordinary directed
edges in the graph. Finally, and most importantly, to prove
that the values returned by our message-passing/variable-
elimination based system can be considered as counts, we
can argue as follows: (1) If we multiply the initial count
values of the variables in a query graph, such as in Fig-
ure 6(a), we will get the size of the full cross-product. (2)
Instead, the messages passed are these counts, “augmented”
by the belief about the presence of particular predicate/edge,
based on Gev , hopefully moving the value away from the
cross-product and bringing it closer to the true count. (3)
Though, counts returned by our method, are usually slight
over-estimations, however it works well as demonstrated in
the experiments.

Implementation & Experiments
We employ a powerful graph representation language, RDF
(Corby, Dieng, and Hébert 2000; Pan 2009) (Resource De-
scription Framework), which is being studied and improved
continuously by the Graph Database community, enabling
us to, effortlessly, handle multi-relational graphs. In addi-
tion, we employ the SPARQL query language for querying
on Graph structured data represented via RDF. Since off-the-
shelf Graph Database systems have their internal optimizers,
it is hard to benchmark the effectiveness of the proposed ap-

Table 1: Results of approximate counting on Combining Rules
w/ Approx Counting Original Variances in approx. counting time

yeast 819 Facts

Counting time (secs) 2.804624383 7.896000303 0.01458
MSE 0.257421138 0.236180698
CLL -0.716749575 -0.665557672

IMDb 264 facts

Counting time (secs) 0.186358918 0.357694597 1.00E-04
MSE 0.168238687 0.06813761
CLL -0.584496553 -0.230262177

Cora 1498 Facts

Counting Time (secs) 0.442818746 1.283442534 5.62708E-05
MSE 0.22335702 0.217540997
CLL -0.639157011 -0.626396615

WebKB 12284 Facts

Counting Time (secs) 4.844581832 8.410465749 6.67E-11
MSE 0.291384968 0.291211276
CLL -0.638317395 -0.587

proach by simply employing them. Hence, we implemented
our approach in Java using the Apache Jena library, which
supports both RDF-based graph representation as well as us-
age of SPARQL.

Note that, our system is not specific to any particular in-
ference or learning algorithm, and thus, it must seamlessly
integrate with existing learning/inference systems. Finally,
our system requires that the input is in predicate logic for-
mat.

Experiments
We consider the problem of parameter learning with mean
and weighted-mean combining rule (Natarajan et al. 2009)
using the EM-algorithm. Extending this analysis to exist-
ing lifted inference methods is our current focus and our
active research direction. In the original EM-algorithm, we
replaced the step where the counting of satisfied instances of
the rule was performed using counting inside a logical for-
malism with a function call to our approximation procedure.
The counting times and other metrics have been compared
between the original code and the modified code that uses
approximate counting.

Original System: The counting mechanism of the prior
work (Natarajan et al. 2009) simply counts the exact number
of literals that satisfy the body of a given clause for every ex-
ample. Since there could be multiple clauses with the same
head, this procedure is repeated for all the clauses, over all
the examples. We refer to this as CombRulesOriginal.

Modification: We replaced the original counting method
with the approximate counting method presented above. We
repeat the approximate counting for every example and for
every rule. We refer to this as CombRulesApprox.

Datasets: We have used 4 standard SRL datasets:

1. Yeast: This data set is about interaction among proteins,
protein complexes and enzymes in yeasts. This dataset is
essentially used in prediction problems where the target is
the class of a protein. This is a mid-size data set with 819
facts.

2. IMDB: We used a smaller version of this with 264 facts,
mainly about actors, directors and movies.

3. Cora: This is again a medium size data set of about 1500
facts. Target predicate is the samevenue(venue, venue).

4. WebKB: This is comparatively large data set, 12284 facts.
Target is the departmentOf() predicate.

For both the approaches, we measure the following - (1)
Counting time: Time taken for counting groundings that sat-
isfy a clause for every example and every sense combination
and finally storing the counts. (2) MSE: Mean Squared Error.
(3) CLL: Conditional Log Likelihood. The last two metrics
are essential to prove the effectiveness of our system. Our
hypothesis is that our approximate counting method sacri-
fices MSE minimally while drastically reducing the count-
ing time.

Table 1 presents the results of our experiments. It
can be observed that there is at least a 2-3 times re-
duction in counting time over all the data sets when
using our approximate counting approach. The MSE
mse(CombRulesApprox) is comparable to the original
MSE mse(CombRulesOriginal), i.e., MSE does not suf-
fer much because of approximation. Similarly, except for the
IMDB domain, the CLL values of the two algorithms do not
differ significantly.

For the IMDB dataset, the performance seems to be much
worse than the original approach. On deeper analysis, it can
be observed that the approximate counting mechanism is
based on average values of in-degree and out-degree sum-
maries and then carefully augmenting the summary values
of one variable with that of another, based on their interac-
tion. With a large dataset, our sample mean would approach
the true distribution. Hence, in our experiments, with rea-
sonable sized datasets approximations based on average de-
gree estimates works well. But, the IMDB dataset is very
small (264 facts). This will generate an extremely sparse ev-
idence graph, which will not reflect the true distribution of
the edge degrees. Hence, we hypothesize that our method
will be more effective for medium to large data sets and not
necessarily for smaller ones.

Conclusion
We presented our work-in-progress on approximating count-
ing of satisfied instances - a crucial operation in several re-
lational probabilistic models. Our proposed approach con-
verted the predicate logic format to an equivalent graph
database format that can be queried efficiently. We also de-
veloped an approximate counting method that is inspired
by probabilistic message passing. Our initial results demon-

strated that this technique is effective in learning from mod-
erate to reasonably large data sets.

More rigorous evaluation of the proposed approach is
warranted. Particularly, we will focus on scaling these
to very large (> 1M) data sets. Comparisons with other
database systems such as Deepdive (Wu et al. 2015) is es-
sential and a comparison to theta-subsumption (Maloberti
and Sebag 2004) could be interesting. Finally, integrating
our approach with powerful lifted inference techniques re-
mains an interesting and fruitful research direction.

Acknowledgments
SN gratefully acknowledges the support of the DARPA
DEFT Program under the Air Force Research Laboratory
(AFRL) prime contract no. FA8750-13-2-0039. KK ac-
knowledges the German-Israeli Foundation (GIF) for Sci-
entific Research and Development project 1180-218.6/2011.
Any opinions, findings, and conclusion or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the view of the DARPA, AFRL, GIF or
the US government.

References
Ahmadi, B.; Kersting, K.; and Hadiji, F. 2010. Lifted belief
propagation: Pairwise marginals and beyond. In P. Mylly-
maeki, T. Roos, T. J., ed., Proceedings of the 5th European
Workshop on Probabilistic Graphical Models (PGM–10).
Castellana, V. G.; Morari, A.; Weaver, J.; Tumeo, A.; Haglin,
D.; Villa, O.; and Feo, J. 2015. In-memory graph databases
for web-scale data. Computer (3):24–35.
Corby, O.; Dieng, R.; and Hébert, C. 2000. A conceptual
graph model for w3c resource description framework. In
Conceptual Structures: Logical, Linguistic, and Computa-
tional Issues. Springer. 468–482.
de Salvo Braz, R.; Natarajan, S.; Bui, H.; Shavlik, J.; and
Russell, S. 2009. Anytime lifted belief propagation. In
Statistical Relational Learning Workshop.
Domingos, P., and Lowd, D. 2009. Markov Logic: An Inter-
face Layer for AI. San Rafael, CA: Morgan & Claypool.
Getoor, L., and Taskar, B. 2007. Introduction to Statistical
Relational Learning. MIT Press.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting
Belief Propagation. In UAI.
Kersting, K., and De Raedt, L. 2007. Bayesian logic pro-
gramming: Theory and tool. In An Introduction to Statistical
Relational Learning.
Lichtenwalter, R. N., and Chawla, N. V. 2012. Vertex collo-
cation profiles: subgraph counting for link analysis and pre-
diction. In Proceedings of the 21st international conference
on World Wide Web, 1019–1028. ACM.
Maloberti, J., and Sebag, M. 2004. Fast theta-subsumption
with constraint satisfaction algorithms. Machine Learning
55(2):137–174.
Matias, Y.; Vitter, J. S.; and Wang, M. 1998. Wavelet-
based histograms for selectivity estimation. In ACM SIG-
MoD Record, volume 27, 448–459. ACM.

Metzler, S., and Miettinen, P. 2015. Join size estimation
on boolean tensors of rdf data. In Proceedings of the 24th
International Conference on World Wide Web Companion,
77–78. International World Wide Web Conferences Steering
Committee.
Milch, B.; Zettlemoyer, L.; Kersting, K.; Haimes, M.; and
Pack Kaelbling, L. 2008. Lifted Probabilistic Inference with
Counting Formulas. In AAAI.
Natarajan, S.; Tadepalli, P.; Dietterich, T. G.; and Fern, A.
2009. Learning first-order probabilistic models with com-
bining rules. AMAI.
Neumann, T., and Moerkotte, G. 2011. Characteristic sets:
Accurate cardinality estimation for rdf queries with multiple
joins. In Data Engineering (ICDE), 2011 IEEE 27th Inter-
national Conference on, 984–994. IEEE.
Pan, J. Z. 2009. Resource description framework. In Hand-
book on Ontologies. Springer. 71–90.
Poole, D. 2003. First-Order Probabilistic Inference. In IJ-
CAI, 985–991.
PrudHommeaux, E.; Seaborne, A.; et al. 2008. Sparql query
language for rdf. W3C recommendation 15.
Riondato, M.; Akdere, M.; Çetintemel, U.; Zdonik, S. B.;
and Upfal, E. 2011. The vc-dimension of sql queries and se-
lectivity estimation through sampling. In Machine Learning
and Knowledge Discovery in Databases. Springer. 661–676.
Schiefer, B.; Strain, L. G.; and Yan, W. P. 1998. Method for
estimating cardinalities for query processing in a relational
database management system. US Patent 5,761,653.
Seputis, E. A. 2000. Database system with methods for per-
forming cost-based estimates using spline histograms. US
Patent 6,012,054.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In AAAI, 1094–1099.
Stocker, M.; Seaborne, A.; Bernstein, A.; Kiefer, C.; and
Reynolds, D. 2008. Sparql basic graph pattern optimization
using selectivity estimation. In Proceedings of the 17th in-
ternational conference on World Wide Web, 595–604. ACM.
Sun, Z.; Wang, H.; Wang, H.; Shao, B.; and Li, J. 2012.
Efficient subgraph matching on billion node graphs. Pro-
ceedings of the VLDB Endowment 5(9):788–799.
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.;
and De Raedt, L. 2011. Lifted probabilistic inference by
first-order knowledge compilation. In IJCAI.
Venugopal, D.; Sarkhel, S.; and Gogate, V. 2015. Just count
the satisfied groundings: Scalable local-search and sampling
based inference in mlns. In Twenty-Ninth AAAI Conference
on Artificial Intelligence.
Wu, S.; Zhang, C.; Wang, F.; and Ré, C. 2015. Incremental
knowledge base construction using deepdive. arXiv preprint
arXiv:1502.00731.
Zou, L.; Mo, J.; Chen, L.; Özsu, M. T.; and Zhao, D. 2011.
gstore: answering sparql queries via subgraph matching.
Proceedings of the VLDB Endowment 4(8):482–493.

