RDN-Boost

A Guide

http://pages.cs.wisc.edu/~tushar/rdnboost/index.html

Task

* Glven:
— train(t)

— car(t, c)

e Todo:

— Learn rules for target(t)

Facts
train(T1)
car(T1, C1)
train(T2)
train(T3)
car(T3, C2)
car(T3,C3)

Problem 1

e target(X) is true, if train has a car
— target(X) <- car(X,Y)

Head Body

Inductive Logic Programming

e Start with target(X)
— target(X) <- car(X,2)
— target(X) <- car(Y,X)

* Does not make sense since car has car id as the second
argument and target has train id as the first argument

— target(X) <- car(Y,2)

* Does not help since the rule says that a train is of target
type if some train has a car

Provide type information

To avoid target(X) <- car(Y,X) provide type
information

mode: target(t)

mode: car(t, c)

But what about target(X) <- car(Y,Z) ?

Modes to the rescue

car(t,c) must use the current train variable

— i.e. variable of type t should already be mentioned
before

‘+’ in a mode exactly does that

But the variable of type c in car may not be
seen before

" in a mode exactly does that
mode: car(+t, -c)

Problem 2

e Additional facts

— big(c)
— small(c)

e target(X) is true if there is a big car and a
small car in the train

— target(X) <- car(X,Y), big(Y), car(X,Z), small(Z)

Modes

car(+t, -c)
big(+c)
small(+c)

big(-c) would give us rules like
target(X) <- big(Y)

ILP search

Target(X)
— car(X)Y)

* big(Y)
— car(X,2)
» small(Z)
— small(Y)

e small(Y)
e car(X,Z)

But ILP is greedy search

e Target(X)

+ big(Y)

— car(X,Z)
» small(Z)
— small(Y)

e small(Y)
e car(X,Z)

http://pages.cs.wisc.edu/~tushar/rdnboost/index.html

Don’t be so greedy

* |Increase lookahead to 2
e Target(X)

— car(X,Y), big(Y)
e car(X,Z), small(Z)

e setParam: nodeSize=2.

Problem 3

 Add facts
— animal(c, a)

— a={Dog, Cat, Mouse}

* Target(X) if a car contains mouse

Possible rules

* Mode: animal(+c, -a)
e target(X) :- car(X, Y), animal(Y,A)
* We need to “ground” the variable A

UseHash

 Mode: animal(+c, #a).
* Generated clauses
— target(X) :- car(X, Y), animal(Y,”Dog”)
— target(X) :- car(X, Y), animal(Y,”Cat”)
— target(X) :- car(X, Y), animal(Y,”Mouse”)

e Still need nodeSize=2

Problem 4

A big car contains a mouse
— Target(X) :- car(X,Y), big(Y), animal(Y,”Mouse”).

Consider ILP search after
target(X) <- car(X,Y), big(Y)

— small(Y), animal(Y, “Dog”)

— small(Y), animal(Y, “Cat”)

— animal(Y, “Dog”), animal(Y, “Cat”)

small, big, animal : are informative
car is not

Use bridgers

Bridgers connect facts
— E.g. age, parents, segment
Bridgers should not be counted

— Infinite bridgers : car(X,Y), car(X,Z), car(X,A) ...

First bridger is free

— car(X,Y) — size:0

— car(X,Y), big(X) —size:1

— car(X,Y), animal(X,”Dog”) — size:1
— car(X)Y), car(X,Z) — size:1
bridger: car/2.

Keep nodeSize=1.

Citeseer

Citation segmentation

Given: I
— token(c, t)

— punctuation(t)

— wordString(t, w)

— next(t, t)

Todo:

— field(t, f) f={"author’, ‘title’, ‘venue’}

http://pages.cs.wisc.edu/~tushar/rdnboost/index.html

Multi-valued classification

 Learn one model for each label
* Change n-valued classification into n binary
classification models
— infield_title(t)
— infield_author(t)
— infield_venue(t)

Joint model

* Model/Rules for infield_title might be useful
for infield _venue and vice versa

— infield_title(T) <- next(T,P), punct(P), next(P,T1),
infield_venue(T1)

e Specify all three predicates as query
predicates

-query infield _venue,infield title,infield author

* During inference, pick the most likely label
— Has to be a post-processing step. Not their in code

Cora

e Citation clustering
* Given:

— Title(b, t)

— Author(b,a)

— Venue(b, v)

— TitleWord(t, w)

— AuthorWord(a,w)

— VenueWord(v,w)

* Todo:
— sameBib(b, b)

Transitivity

We might want the model to learn rules like
— sameBib(X,Y) <- sameBib(X,Z), samebib(Z,Y)

If we use sameBib(+b, -b)

— sameBib(X,Y) <- sameBib(X,Y)

The rule is perfect but not really useful for
inference

Force one variable to not be in head of clause
— sameBib('b, +b)
— sameBib(+b, 'b)

Code issues

 Cannot handle same predicates in head and
body

 RDN-Boost will create recursive_<predicate>
automatically

— recursive_sameBib for Cora
e Specify modes as

— recursive_sameBib('b, +b)

— recursive_sameBib(+b, "b)

Greedy search issues

Intuitively a good rule would be

— sameBib(X, Y) <- Title(X, T1), Title(Y, T2),
sameTitle(T1, T2).

No subset of predicates is “informative”
Needs a node size of 3 or Title/2 as bridger

Mode overview

* +:variable must have appeared before
e - :variable can be new but does not have to

* #:ground the variable/use constant
" :variable must not be in the head

e (@<val>: variable must take value <val>

e

http://pages.cs.wisc.edu/~tushar/rdnboost/index.html

Tree representations

e <train_folder>/models/
— bRDNs/Trees/*tree : Trees as list of clauses

— bRDNs/dotFiles/*dot: .dot files that can be used
oy graphViz to visualize

— WILLtheories/*txt : Prolog format for trees. Also
has human readable text version of all trees in one
file

Sample tree

%%%%% WILL-Produced Tree #1 @ 0:51:19 10/20/10. [Using 13,141,856 memory cells.] %%%%%

% FOR advisedby(A, B):

% if (professor(B))

% then if (professor(A))

% | then return -0.1418510649004878; // std dev = 0.000, 7.000 (wgt'ed) examples reached here. /* #neg=7 */

% | else if (publication(C, B))

% | | then return 0.739727882467934; //std dev = 0.323, 76.000 (wgt'ed) examples reached here. /* #neg=9 #pos=67 */
% | | else return 0.3781489350995123; // std dev = 0.500, 25.000 (wgt'ed) examples reached here. /* #neg=12 #pos=13 */
% else return -0.1418510649004879; // std dev = 0.000, 132.000 (wgt'ed) examples reached here. /* #neg=132 */

Additional flags

e modelSuffix

— Run multiple experiments with different values
for this flag to prevent overwriting

* negPosRatio(default=2)

— Each boosting iteration samples negative
examples so that negative:positive ratio is 2:1

— Most datasets have too many negatives

Tree parameters

speed(X,S), S>120

yes

job(X, politician) °

yes

yes
job(Y, politician) °

no

Tree depth

=4

knows(X,Y)

no

Number of

yes
clauses =5

http://pages.cs.wisc.edu/~tushar/rdnboost/index.html

