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Abstract. We consider the problem of modeling adverse pregnancy out-
comes (APOs) from diverse data sets and aim to understand what is com-
mon between them and what is unique for each of these data sets. To
this effect, we consider three different data sets (a clinical study from the
US, EHRs from a US hospital, and a clinical study in India) and model
three specific APOs - preterm birth, new hypertension, and preeclamp-
sia. Since LLMs can efficiently summarize the scientific literature, we
use them to generate initial hypotheses and use the different data sets
to refine the hypotheses to create joint probabilistic models (as Bayesian
networks). Our analyses show that there are eight relationships between
risk factors common to all three populations and some unique relation-
ships for specific populations.
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1 Introduction

Adverse Pregnancy Outcomes (APOs) such as preterm birth (PTB) pose a sig-
nificant challenge in maternal-child health, with approximately one in ten births
occurring prematurely on a global scale. The implications of PTB extend beyond
immediate neonatal mortality, influencing both short-term and long-term health
outcomes [17]. However, the relationship between APOs and their risk factors
can vary across geographical regions [9]. This makes integration and analysis of
multiple data sets vital to understanding APOs and mitigating their risk.

We aim to model the differences and commonalities between data sets of
APOs from different countries. Specifically, we aim to perform this analysis by
inducing interpretable probabilistic models from three data sets from 2 countries,
namely India (Garbh-Ini [1]) and the United States (nuMoM2b [13] and EHR
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data from Regenstrief Institute). This would help advance our understanding of
the multifaceted nature of APOs and potentially inform targeted interventions
tailored to specific geographical regions.

Probabilistic graphical models such as Bayesian networks [19, 14] have long
been used in AI for modeling interactions of multiple factors by learning joint
distributions. In contrast to discriminative learning methods where the goal is
to best predict an outcome, these generative models learn a joint distribution
that can allow us to query comprehensively and understand the data in a more
holistic manner. The biggest barrier to learning these models is the amount of
data required which can be offset by using domain knowledge to construct an
initial model and refining this model using the data.

Consequently, we employ the use of LLMs to generate an initial model (since
LLMs can efficiently summarize the literature), refine the model with domain
experts, and then use each of the data separately to refine the models for the
respective populations. Once these different models are obtained, we perform
meta-analyses of these models and summarize the findings. The common in-
fluence relationships that exist in all the data sets are between the risk factors
BMI and HiBP and the three APOs new hypertension (NewHTN), preeclampsia
(PreEc), and preterm birth (PTB). We also present the edges that are unique to
each of these subpopulations (for instance, age is important in nuMoM2b but is
not as influential in Garbh-Ini). Our hypothesis is that given such a unified yet
diverse view, it is now possible to develop population-specific treatment plans
for mitigating the APOs.

1.1 Data description

nuMoM2b: The nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitor-
ing Mothers-to-Be [13]) study focuses on identifying risk factors for APOs in the
United States. It enrolled a diverse cohort of 10,038 nulliparous subjects across
8 US sites. Data collection occurred at the start of pregnancy and at subsequent
visits throughout the pregnancy.

Electronic Health Records: Apart from the data from the nuMoM2b
study, we also acquired Electronic Health Records (EHR) from the Regenstrief
Institute. This data set includes non-nulliparous subjects but does not include
information about family history of chronic conditions.

Garbh-Ini: The Garbh-Ini study [1] conducted in a single site within Haryana,
India, aims to characterize PTB and identify associated risk factors. It enrolled
8,050 subjects both nulliparous and non-nulliparous, and collected data at the
start of pregnancy and at subsequent visits throughout the pregnancy.

2 Background

Bayesian Networks (BNs [19]) are a class of Probabilistic Graphical Models
(PGMs [14]) that factorize the joint distribution over a set of variables using a
Directed Acyclic Graph (DAG) and local conditional probability distributions
(CPDs). The DAG has a node corresponding to each variable and a directed edge
between nodes represents influence. For example, an edge Age → PTB would
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imply that the age of the subject at pregnancy influences our belief about the
likelihood of preterm birth. The local CPDs quantify the influence in terms of
probability values. Formally, a BN M over a set of n variables V = {X1, . . . , Xn}
is defined as the tuple ⟨G, θ⟩ where G is the DAG representing the structure of
the BN and θ is the set of parameters for the local CPDs. The joint probability
distribution over V defined by the BN is

P (X1, . . . , Xn) =
∏
X∈V

Pθ(X | PaX) (1)

where PaX is the set of parents of the BN node corresponding to variable X.
BNs can reason under uncertainty and answer probabilistic queries about the
variables. Additionally, since BNs consist of directed influences between variables
and local conditional probabilities, they are easy to interpret.

The structure of the BN encodes conditional independence relations (CIs)
between variables; each variable X is independent of its nondescendents given
its parents PaX . These two properties – reasoning under uncertainty and inter-
pretability make BNs a good fit for high-stakes domains such as healthcare that
require models that can reason about complex relationships between variables
while being able to develop trust with domain experts.

In this work, we induce BNs from each of the 3 data sets and compare the
influence relations between APOs and their risk factors. However, inducing the
structure of a BN directly from data is a data-hungry and computationally hard
problem [7]. One approach to mitigate this problem is Theory Refinement [16].
This approach involves constructing an initial BN structure from domain knowl-
edge and then refining this BN using data. Specifically, the BN is refined by per-
forming local operations such as adding an edge, deleting an edge, and reversing
an edge to maximize a given heuristic score. Commonly used scores include the
Minimal Description Length(MDL [15]) and Bayesian-Dirichlet Scores(BD [6]).
The MDL score can be adapted to exploit local structure [12] in the form of
context-specific independence relations (CSIs [3]) if the local conditional distri-
butions of the BN are represented as decision trees. While prior works obtain
the initial BN from a domain expert, we aim to construct the initial BN by
extracting approximate domain knowledge from a deep generative model.

Large Language Models as approximate knowledge sources: LLMs [26]
are a class of deep generative models for text data. They consist of two Artifi-
cial Neural Networks (ANNs) called an encoder and a decoder. These encoder
and decoder ANNs are used to encode input prompt text from a user and to
generate response text from the encoded prompt respectively. Examples of such
LLMs include General Purpose Transformer (GPT [5]) and Gemini [23]. These
models are fit using large amounts of textual data and have been shown to
generate realistic text. However, they cannot reason about the information em-
bedded in them [25]. As a result, prior work has tried to extract knowledge from
existing LLMs and inject the knowledge into models that can perform reason-
ing [20, 18, 10]. Inspired by these directions, we extract knowledge in the form
of influence relations from an LLM, use this knowledge to instantiate a BN, and
then refine the BN using clinical data.
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3 Methodology

We aim to find the relationships between variables common across the three
data sets, and the ones unique to each data set. We formalize this task as the
following problem

Given: Data sets D1,D2,D3 over a set of variables X, and an LLM O
To Do: Find a set of pairwise influences that are supported in all 3 data
sets and the sets of influences supported only in particular data sets.

We address the problem of identifying consistent and dataset-specific rela-
tionships by learning three BN structures and then comparing them. We identify
two types of edges, common edges, present in all refined BNs, which represent
pairwise influences consistently supported by all data sets; and dataset-specific
edges, unique to a specific BN, which represent pairwise influences supported
only in the corresponding data set.

However, learning a BN structure from data is a difficult problem. Firstly,
BNs are highly expressive models, and finding the structure that maximizes the
data likelihood would result in an overly complex BN that overfits that training
data. To address this, BN structures are learned by minimizing a cost function
that includes implicit [6] or explicit [15] regularization. Secondly, even with a
cost function (say Cost(M,D)), learning the structure of a BN requires us to
solve the following combinatorial optimization problem:

argmin
M

Cost(M,D) (2)

This problem requires a search over a superexponential number of BN graph
structures. Not only is searching over such a large space computationally in-
tractable (NP-Hard to be specific), but it also requires a large amount of data
to be able to determine the optimal structure[7].

One way to make this problem tractable is to exploit domain knowledge. We
encode domain knowledge in three ways. Firstly, we encode domain knowledge
through the choice of scoring function. Specifically, we use the MDL scoring func-
tion that prefers concise structures over more complex structures through an ex-
plicit penalty term. Secondly, we use domain knowledge about relations between
the variables to construct an initial BN structure. While such BN structures
are generally elicited from domain experts, we obtain the initial structure by
querying an LLM. We further restrict the search space by using domain knowl-
edge to identify and exclude temporally impossible edges. For instance, the edge
PTB → BMI is invalid as preterm birth cannot influence Body Mass Index
(BMI) measured at the pregnancy’s start. By incorporating domain knowledge,
we restrict the search from an exhaustive exploration of all BN structures to
a local search over the structures in the neighborhood of an initial structure
obtained from an LLM.

3.1 BN refinement using the MDL Score

We refine the initial BN structure for each data set by minimizing the MDL
score. The MDL score for a BN (denoted by M) with respect to a data set
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(denoted by D) is the sum of the description length of the data encoded using
the BN model (DL(D | M)) and the description length of the BN model itself
(DL(M)). Concretely, the MDL score is given as

MDL(M;D) = DL(D | M) + DL(M) (3)

The first term is the description length of the encoded data and captures the
number of bits required to encode the data points using the probabilities esti-
mated by the BN model. The second term is the description length of the model
and captures the complexity of the BN itself. Since Huffman coding allows data
points to be encoded using their probabilities, DL(D | M) is approximated by
the negative log-likelihood of the data set under the BN. The description length
(DL) of a BN, denoted by DL(M), captures the complexity of the model. It con-
sists of two components, the description length of the graphical structure of the
BN G and that of the parameters of the local conditional distributions θ.

3.2 Encoding the BN model

Description Length of the Graphical Structure. This term represents the
space required to encode the BN’s structure G. Each node’s description includes
the number of parents and their names. Since each node can be encoded in log n
units of space, the description length of the structure is

∑
X∈V (1+ |PaX |) log n.

Description Length of the Parameters. This term represents the space re-
quired to encode the parameters, θ. These parameters define the local CPDs over
each node given its parents. There are two ways to encode these distributions, as
tables and as trees. Conditional Probability Tables (CPTs) explicitly enumerate
the conditional probability values corresponding to each parent configuration.
Each entry in a CPT can be encoded as an ordered list of fixed-width floating-
point values, each of which can be encoded in space 1

2 logN, where N is the size
of the data set. The resulting description length for all the CPTs of the BN is∑

X∈V (|X| − 1)|PaX |( 12 logN).

Local conditional distributions can be represented as trees to exploit local
structure [12] in the form of CSIs [3]. The description length of such a tree-
structured local conditional distribution over a variable X given its parents is
B(|X|−1)( 12 logN)+

∑d
l=1 log(|PaX |−Al). Here, B is the number of leaf nodes,

d is the depth of the tree and Al is the number of internal nodes at level l.

3.3 Computing the CSI-aware MDL Score

To account for CSIs in the MDL score we use the Classification and Regression
Trees (CART [4]) algorithm. At each node, we fit a decision tree to predict the
node’s value from its parents. This decision tree serves as the tree-structured
CPD for computing the MDL score. The overall MDL score is given by the
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following equation:

MDL(M ;D) = −
∑
x∈D

logPM(x) +
∑
X∈V

(1 + |PaX |) log n

+
∑
X∈V

BX(|X| − 1)(
1

2
logN) +

d∑
l=1

log(|PaX | −AXl
)

(4)

where BX and AXl
are the number of leaf nodes and the number of internal

nodes at level l for the decision tree fit for node X respectively.

4 Experimental evaluation

We consider 3 APOs, namely, New Hypertension (NewHTN), Preeclampsia (PreEc),
and Pre-term birth (PTB), and study their relationship with 5 risk factors from
prior work [8]. Specifically, the risk factors include Family History of diabetes
(Hist), Age at the start of pregnancy (Age), Body Mass Index at the start of
pregnancy (BMI), presence of Hypertension at the start of pregnancy (HiBP),
and Parity. Of these variables, Parity does not apply to nuMoM2b as the study
selected nulliparous subjects (Parity = 0) and Hist was not available in the EHR
data. We removed data points that had missing values for any of the considered
variables. Table 1 summarizes the variables, their discrete values, and the corre-
sponding proportions in each of the three data sets.

We obtained a set of edges from Gemini to construct an initial BN structure
and then refined this structure for each of the three data sets. Figure 1 shows
the initial BN obtained from Gemini, the edges common to all the refined BNs,
and the edges unique to each of the three data sets8. Apart from these, the edges
{Age → Parity,Parity → PTB,Parity → PreEc} were present in both the data
sets that had the Parity variables available (Garbh-Ini and EHR).

The edges common to all three refined BNs reflect existing domain knowledge.
High BMI is known to increase the risk of Hypertensive disorders of pregnancy
such as preeclampsia and new hypertension [21, 2]. Hypertensive disorders of
pregnancy are known to increase the risk of preterm birth [24]. Finally, hyper-
tension at the start of pregnancy (HiBP) and new hypertension are known risk
factors for preeclampsia [11].

The edge from BMI to Parity in the BN learned from the EHR data might
reflect the fact that high obesity negatively influences fertility [22]. This edge
is supported by the EHR data which has the largest proportion of high BMI
subjects. While BMI is expected to rise with an increase in Age, the influence
relation is unique to the BN learned from the Garbh-Ini data set.

5 Discussion

A few important differences between the populations need to be pointed out.
First, while the nuMoM2b study studied nulliparous subjects (first-time moth-

8 The code for the experiments, the LLM prompt, and the list of temporally impossible
edges is available at https://github.com/saurabhmathur96/BN-Refinement

https://github.com/saurabhmathur96/BN-Refinement
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Fig. 1: The initial BN structure obtained from an LLM (a), edges common to
the BNs refined on all 3 data sets (b), edges unique to nuMoM2b (c), EHR (d)
and (e)
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Variable Value nuMoM2b Garbh-Ini EHR

Age ≤ 21 21.03% 31.54% 9.87%
21-35 72.36% 67.78% 75.27%
>35 6.61% 0.67% 14.86%

BMI ≤ 18 3.39% 19.64% 1.12%
18-25 51.29% 67.13% 31.53%
>25 45.31% 13.22% 67.35%

Parity =0 100% 48.50% 6.3%
0-2 N/A 47.12% 67.36%
>2 N/A 4.38% 26.34%

Hist TRUE 20.55% 8.10% N/A
HiBP TRUE 2.84% 2.10% 9.37%
PReEc TRUE 5.85% 3.80% 7.54%
NewHTN TRUE 16.12% 3.40% 11.09%
PTB TRUE 8.11% 12.80% 9.41%

Total 9,368 4,159 16,487

Table 1: Variable-value proportions for each of the three data sets

ers), there were no such restrictions in the other two datasets. Second, the com-
mon risk factors and APOs were chosen across the different data for the purposes
of this study. Consequently, APOs such as gestational diabetes were not consid-
ered as they were computed differently in the Garbh-Ini study. Thus, some of the
relationships such as the influence of family history might include some hidden
confounders (such as gestational diabetes). Exploring these issues remains an
open problem. Finally, a variable such as race, a social construct, which plays
an important role in a diverse dataset such as the EHR is not considered due to
its absence in the single-state study in India.

Nonetheless, several common themes emerged. The influence of HiBP and
BMI is quite significant across populations and data sets. It is clear that in
nuMoM2b participants, age has a direct influence on PTB while in Garbh-Ini
participants, age directly influences BMI (potentially through multiple pregnan-
cies). It is important to understand the key differences in the data itself and
these models provide a way of doing that. Future research could explore several
avenues, including incorporating more data sets, identifying hidden confounders,
understanding the similarities and differences in population, and extending these
analyses to more global data sets. Finally, integrating multi-omic data, such as
gene expression and proteomics data, alongside clinical data from diverse sources
could offer deeper insights into the molecular pathways underlying APOs.
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