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Abstract
We present our BoostSRL system, a Java-based learning sys-
tem that inductively learns probabilistic logic clauses from
data. Our system is capable of learning different types of
models, handling modeling of hidden data, learning with
preferences from humans, scaling with large amounts of
data by approximate counting and modeling temporal data.
We review these capabilities briefly in this short paper.

1 BoostSRL system
Most learning methods inside Probabilistic Programming
and the related Statistical Relational AI communities have
focused on learning the parameters (probabilities/weights)
given the program and the data. Our gradient boosted ap-
proach, presented in Figure 1 [9, 10], instead relies on the
intuition that learning a set of weak partial programs (simi-
lar to ensemble methods in classical machine learning), and
learns both the rules/programs and the parameters of the
rules simultaneously. As shown in the figure, at a fairly high-
level, the algorithm proceeds as follows: during every itera-
tion, the gradients are computed for every example and these
gradients become the regression values on the examples, a
new logical (i.e., parameterized) regression tree is learned
that fit these examples, the tree is added to the model and
the process is repeated. Table 1 shows several rules from a
probabilistic program learned for predicting the winner of a
football game based on yards earned by each team, the num-
ber of turnovers as well as the season the games were played.
The entire code base with full documentation is available at
https://starling.utdallas.edu/software/boostsrl/. We have de-
veloped varied extensions for different models, distributions,
learning settings and applications.

1.1 Multiple models:
Our framework and the system can learn different types of
probabilistic programmingmodels. It can learnMarkov Logic
Networks [2], undirected graphical models that employs the
use of weighted logic clauses. It can learn Relational Depen-
dency networks [10], cyclic lifted graphical models and can
learn with hidden data [3]. In addition, this was employed in
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Figure 1. Relational Function Gradient Boosting: A boosted
algorithm that iteratively fits the current error and adds it to
the model. The approach is similar to that of the standard xg-
Boost with one key difference, the gradients that are added
i.e., the trees/partial programs are essentially first-order i.e.,
parameterized. Hence the successive learning of relational
regression models allow for a compact representation of the
learned concepts. This algorithm is the backbone on which
several extensions have been developed - different distribu-
tions, different types of probabilistic programs, learning with
human advice in the loop, scaling based on databases and
finally, adapting them to several real tasks.

Table 1. Probabilistic program for predicting the winner of
football games. Positive weights indicate that team T is more
likely to win the game, while negative values indicate the
opponent is more likely to win.

RULE WEIGHT
winner(T, G)← yds(T, G, High), turnovers(T, G, Low) 0.85
winner(T, G)← yds(T, G, High), turnovers(T, G, High) 0.69
winner(T, G)← yds(T, G, High), year(G, 1997) 0.45
winner(T, G)← yds(Opponent,G,High) -0.14

the context of sequential decision-making, imitation learning,
and has been used to learn relational policies [7]. Finally, we
extended our algorithm to learn over continuous time [17],
the first of its kind in logical models.

1
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1.2 Multiple distributions:
Our system can learn different types of distributions - multi-
nomials, exponential, Gaussian and Dirichlet distributions.
We are currently extending the system to learn fully hybrid
relational models.

1.3 Learning with human advice:
Most research inside probabilistic logic models either em-
ployed the full model and performed inference or learned
only the parameters given the rules themselves. Our previ-
ous work on boosting instead learned the rules from the data.
In essence, in our prior work, the humans were restricted to
be “mere experts". Consequently, we have extended our sys-
tem to include human advice in the form of preferences [12],
precision vs recall tradeoff [16], qualitative constraints [14]
and more recently privileged information [14].

1.4 Closing the loop:
While BoostSRL system can take human advice as input,
the input is typically taken before learning occurs. Inspired
by active learning, we have extended the system to solicit
advice as needed. It explicitly computes the uncertainty in
its model and solicits advice from the expert as needed [13].
Our BoostSRL system is capable of active advice seeking for
the different types of logical models specified above.

1.5 Scaling:
Modern challenges require systems capable of handling large-
scale data. The BoostSRL system has has been implemented
on top of a relational database [4]. Malec et al. [4] demon-
strate the efficiency gains of combining databases with effec-
tive background knowledge in inductive logic programming.
Das et al. [1] introduce an efficient approximate counting
technique which can be used as a part of our BoostSRL sys-
tem when learning MLNs by converting the partial programs
into a graph. We have recently generalized this work to now
learn hypergraphs that allows for effectively learning multi-
arity predicates in an efficient manner.

1.6 Applications:
As part of the BoostSRL system, we have developed a NLP
pipeline that have been employed for relation extraction
previously [5, 11, 15]. The key aspect of this pipeline is that it
reads text documents as inputs, runs it through Stanford NLP
pipeline, creates corresponding logic facts and rule base thus
making it ready for learning logical models. This pipeline has
been used in combination with BoostSRL to identify adverse
drug effects from PubMed abstracts [5] and knowledge base
relations [15].

Medical applications: We used the BoostSRL system to
to classify patients into normal, mild cognitive impairment
(onset of Alzheimer’s that is hard to detect) and Alzheimer’s
using relational features from MRI scans [6]. We show part

Table 2. Part of the probabilistic program for predicting
Alzheimer’s based on regions in the MRI scan. The system
identifies important regions of the brain such as the hip-
pocampus and important features of the MRI image such as
the cerebrospinal fluid (CSF) and grey matter (GM) levels.

RULE WEIGHT
alz(B)← CSF(B, Left parahippocampal gyrus) > 0.19,

CSF(B, Lobule IX of vermis) > 0.13 0.57
alz(B)← CSF(B, Left parahippocampal gyrus) > 0.19,

CSF(B, Lobule IX of vermis) ≤ 0.13
CSF(B, Left hippocampus) > 0.37 0.70
· · ·

alz(B)← CSF(B, Left parahippocampal gyrus) ≤ 0.19,
CSF(B, Right superior frontal gyrus) ≤ 0.25
GM(B, Left hippocampus) ≤ 0.56 0.68

of the program in Table 2, where the system has identified
special regions and features of the brain associated with
Alzheimer’s. We have also used our system to predict coro-
nary artery calcification levels based on historical data [8].

2 Conclusion
BoostSRL is a versatile system that is capable of learning
different types of models of multiple distributions. Its abil-
ity to learn with different types of human knowledge and
effectively scale up to large data enable it to be applicable to
many challenging tasks.
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