
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Approximate Counting for Fast Inference and
Learning in Probabilistic Programming

Mayukh Das
∗
, Devendra Singh Dhami

∗
, Gautam Kunapuli

∗
, Kristian Kersting

†
, Sriraam Natarajan

∗

∗
The University of Texas at Dallas,

†
TU Darmstadt;

∗
{mayukh.das1, devendra.dhami, gautam.kunapuli, sriraam.natarajan}@utdallas.edu,

†
kersting@cs.tu-darmstadt.de

Abstract
Inference and Parameter Learning inside Probabilistic Pro-

gramming use an important operation that can be approx-

imated: counting. We present an efficient approximation

scheme that allows for fast counting and consequently faster

inference and learning.

Keywords Scaling, Approximate Counting, Hypergraph

1 Introduction
Learning and inference in Probabilistic Programming and

related Statistical Relational Learning (SRL) is difficult, par-

ticularly due to one major bottleneck – counting over sup-

porting instances of partial programs (partially instantiated

clauses/rules in probabilistic logic representation), [4, 7, 8].

Since counting is hard (#P-complete), learning and infer-

ences become intractable for large data sets. But for most

learning/inference tasks, exact counts are unnecessary in

presence of relatively high number of instances and hence

can be approximated. For example, there will not be any sig-
nificant change in the belief over the popularity of a Professor,
based on whether (s)he has 400 or 427 publications.
Several recent approaches for fast, approximate count-

ing [3, 9], while reasonably successful, have major limita-

tions due to some restrictive assumptions – including re-

stricted arity [3] or MLN-specific algorithms and lack of sup-

port for partial groundings [9]. Our approach,Motif-based

Approximate Counting via Hypergraphs (MACH), is a gen-

eralized count approximation technique enabling scalable

counting of partial programs.

2 Approximate Counting via Hypergraphs
Our approach for computation of satisfied instances (true

groundings) of rules (in First Order Logic), exploits it’s equiv-

alence with the problem of counting matching subgraphs.

However, subgraph matching is hard problem in itself (#P-
complete) and Das et al. [3] shows how pre-computed graph

statistics followed by a message passing strategy, results in

a reasonable approximation in large (dense) data sets. While

effective, their formulation is empirical at best and lacks

theoretical basis. MACH provides a fundamentally robust

formulation using Hypergraphs.

Compilation: A hypergraph [1] is a generalization of a

graph. A hyperedge can connect an arbitrary number of ver-

tices and thus, can faithfully represent relations/predicates of

Teaches(Amy, AI, Fa17),
Teaches(Amy, ML, Fa17)
Teaches(Amy, AI, Sp18),
Teaches(Amy, Opt, Sp18)
TA(Ben, AI, Fa17),
TA(Ena, ML, Fa17)
TA(Cam, AI, Sp18),
TA(Deb, Opt, Sp18)
AdvisedBy(Ben, Amy),
AdvisedBy(Deb, Amy),
AdvisedBy(Fei, Amy)

Figure 1. (left) Motif M1 for C1; (middle) Facts in the world;

(right) Ground hypergraph, G1. Ternary predicates Teaches and
TA are represented as hyperedges, via blue dashed lines and red

solid lines resp., inM1 and G1.

any arity, as opposed to an ordinary edge (limited to binary).

The key idea is to transform the data (set of facts/ground liter-

als) into a hypergraph G and a FOL clause (whose #instances

we are interested in) to a hypergraphmotifM, termed herein

as a Partially Grounded StructuralMotif (PGSM). We then

(approximately) count the sub(hyper)graphs in G that match

the pattern M. The transformation creates vertices from

the arguments of a predicate and the predicate/relation it-

self forms a partially-directed labeled hyperedge. “Partially
Grounded” indicates that some of the terms in M, may be

instantiated. However, all vertices/nodes in G are grounded.

Example. A FOL clause C1 = AdvisedBy(s, p) ∧ TA(s, c, t) ∧
Teaches(p, c, t) transforms into a PGSMM1 as shown in Fig-
ure 1. Hypergraph G1 is created from the facts. Note, there are
only 2 instances in G1 that matchM1 (purple shaded regions)
Approximation: The number of subgraphs matching a mo-

tif M can be expressed as the expected vertex product of

M = (VM , EM) given G.

P (M|G)
©­«
∏

v ∈VM

n(v)
ª®¬ = ©­«

∏
e ∈EM

P(e |G)
ª®¬ . ©­«

∏
v ∈VM

n(v)
ª®¬ (1)

where, n(v), the typecount, is the #entities in the domain of

the variable v . Ex: In Figure 1, n(s) = 5 as there are 5 students.
If it is grounded (v = C), n(v) = 1 ∨ 0 based on existence

of C in G. P(e |G) represents the local model of a hyper-
edge (regarded as a random variable) in M. Thus, the joint

model of the motif M is factorizable into a product over the

local models. The second part

∏
v ∈VM

n(v) of equation 1 is

straightforward and is the Cartesian product over all the

variables in a clause. The first part P(M|G), is what we are

interested in estimating. If the distribution can be computed

exactly, eqn. 1 will return the exact counts. However, exact

1

estimation of the local edge distributions is inefficient and we

approximate them. For further clarity, consider the motifM

Figure 2. Motif M ≡ ra(v1,v3) ∧ rb (v2,v3) ∧ rc (v3,v4) ∧
rd (v4,v5,v6). Hyperedge rd represents ternary relation rd().

in Figure 2. Here,

∏
e ∈EM

P(e |G) = P(ra) P(rb) P(rc |ra , rb)
P(rd |rc). Note, ra and rb have no dependencies, whereas mod-

els of rc and rd are distributions conditioned on incoming

edges on the source vertices. For any directed (hyper)edge,

source vertex is where the edge starts and sink is where it

ends. Since, for any n-hyperedge (n > 2) direction is am-
biguous, we use ‘Partially-Ordered’ Hypergraphs[5] where
the last argument in an n-ary predicate is considered as the

sink vertex and the rest as sources. The joint model forM

is thus akin to a directed probabilistic graphical model over

edge random variables.

To efficiently compute local models, we use graph sum-

mary statistics (of G) of 3 types – (1) TypeSum: cardinality of

object and relation types, (2) DegreeSum: out and in-degrees

of all objects, and their type averages (3) DependencySum:

pairwise conditionals among all relation types estimated

via sampling G

TypeSum allows us to compute the Cartesian product and

prior distributions of edges in M (P(r) = |r |
n(u)×n(v)×... , r

is a hyperedge ⟨u,v, . . .⟩). If one or more vertices in r are
grounded, we use DegreeSum. For instance, if r is binary

⟨u,v⟩, and v is grounded (v = C) then P(r) = Inr (v=C |G)

n(u)×n(v) , us-

ing the in-degree sincev is sink. n-hyperedges (n > 2) follow

the partial ordering protocol described earlier. Conditional

distributions are critical and require us to leverage several

properties and assumptions – (1) independence among in-

coming parents incident on same source [Ex: P(rc |ra , rb) =
P(rc |ra)P(rc |rb)], (2) independence due to grounded shared

vertex [Ex: If v3 was grounded P(rc |ra , rb) = P(rc)] and (3)

independence among incoming parents on different source

vertices of a n-hyperedge [Ex: If there was another incoming
edge re on v4, assume P(rd |rc , re) ≈ P(rd |rc)P(rd |re)]. While

the last one is a restrictive assumption, it allows for using

pairwise DependencySum, since efficient computation of

all possible conditionals is intractable. In summary, as pre-
processing, grounded hypergraph G is constructed, summa-
rized and stored. Then, every given clause is transformed into
motifM and approximately counted as described above.

3 Experiments
We evaluate MACH based on 2 experimental questions, (Q1)
Is MACH effective and efficient in full model learning with n-

ary relations? and (Q2) Is faithful modeling ofn-ary relations

crucial? MACH is implemented as a pluggable module using

Java-based HypergraphDB architecture [6]. We integrated it

into the state-of-the-art Boosted MLN framework [7] for full

model (structure+parameters) learning. MACH is compared

against the following baselines, (1) FACT [3] and (2) MLN-

Boost (Boosted MLN learner w/o approximate counting).

We evaluate with 2 data sets, UWCSE, standard link—

prediction data set over staff, faculty and students and NELL-
Sports, a sports domain data set extracted from NELL [2].

Table 1 shows how MACH allows significant reduction in

learning time with no deterioration in predictive perfor-

mance (AUC-ROC & PR) answering (Q1) affirmatively. Note

that, UWCSE contains ternary predicates which were not

modeled correctly by FACT leading to significantly worse

performance, corroborating the need for faithful representa-

tion of n-ary relations (Q2).

Performance Efficiency
Data Sets Methods ROC PR L-Time [s]

UWCSE
∗∗

MACH 0.981 0.337 13.2
FACT 0.500 0.0068 7.48

MLN-Boost 0.998 0.361 27.5

NELL-Sports

MACH 0.78 0.65 253.92

FACT 0.76 0.64 238.07

MLN-Boost 0.78 0.66 396.24

Table 1. Results: Performance (AUC) vs. Efficiency (Learning
time in seconds). ** denotes presence of n-ary predicates.

4 Conclusion
We present a generalized and robust count approximation

approach MACH for scalable and efficient probabilistic rela-

tional learning. Theoretical guarantees on error as well as a

unifying framework integrating domain reduction and ap-

proximation are some interesting future research directions.

References
[1] C. Berge and E. Minieka. 1973. Graphs and hypergraphs. North-Holland

publishing company Amsterdam.

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr, and T.M.

Mitchell. 2010. Toward an architecture for never-ending language

learning. In AAAI.
[3] M. Das, Y. Wu, T. Khot, K. Kersting, and S. Natarajan. 2016. Scaling

Lifted Probabilistic Inference and Learning Via Graph Databases. In

SDM.

[4] P. Domingos and D. Lowd. 2009. Markov Logic: An Interface Layer for
AI. Morgan & Claypool.

[5] F. Feng, X. He, Y. Liu, L. Nie, and T.S. Chua. 2018. Learning on Partial-

Order Hypergraphs. In WWW.

[6] B. Iordanov, K. Vandev, C. Costa, M. Marinov, M. Saraiva de Queiroz, I.

Holsman, A. Picard, and I. Bogdahn. 2010. HyperGraphDB 1.3. (2010).

[7] T. Khot, S. Natarajan, K. Kersting, and J. Shavlik. 2011. Learning Markov

logic networks via functional gradient boosting. In ICDM.

[8] D. Poole. 2003. First-Order Probabilistic Inference. In IJCAI.
[9] S. Sarkhel, D. Venugopal, T. Pham, P. Singla, and V. Gogate. 2016. Scal-

able Training of Markov Logic Networks Using Approximate Counting.

In AAAI.

2

	Abstract
	1 Introduction
	2 Approximate Counting via Hypergraphs
	3 Experiments
	4 Conclusion
	References

