Exploiting Relational Planning and Task-Specific Abstractions for Multiagent
Reinforcement Learning in Relational Domains

Ranveer Singh !, Nikhilesh Prabhakar!, Sriraam Natarajan !, Prasad Tadepalli >

The University of Texas at Dallas
2Oregon State University
{ranveer.singh, nikhilesh.prabhakar, sriraam.natarajan} @utdallas.edu, tadepall @eecs.oregonstate.edu

Abstract

Multiagent Reinforcement Learning poses significant chal-
lenges due to the exponential growth of state, object, and ac-
tion spaces and the non-stationary nature of multiagent en-
vironments. This results in notable sample inefficiency and
hinders generalization across diverse tasks. The complex-
ity is further pronounced in relational settings, where do-
main knowledge is crucial but often underutilized by existing
MARL algorithms. To overcome these hurdles, we propose
integrating relational planners as centralized controllers with
efficient state abstractions and reinforcement learning. This
approach proves to be sample-efficient and facilitates effec-
tive task generalization.

Introduction

Multiple agents learning to reason and act under uncertainty
in the presence of a varying number of objects and rela-
tions while reasoning about different levels of abstraction
has long been a cherished goal of Al. Several venues have
tackled a subset of these problems. Reinforcement learning
(RL) (Sutton and Barto 2018) and multiagent RL (Albrecht,
Christianos, and Schifer 2024) techniques have long been
developed for learning under uncertainty and with multiple
agents respectively. They have been extended to hierarchical
domains for a long time to allow for reasoning at multiple
levels of abstractions (Dietterich 1998; Singh 1992; Sutton,
Precup, and Singh 1999).

Statistical Relational Learning and AI (StaRAI) (Getoor
and Taskar 2007; Raedt et al. 2016), on the other hand, have
dealt with learning in the presence of varying numbers of
objects and relations, i.e., in relational domains. However,
relational RL (DZeroski, DeRaedt, and Driessens 2001) is
a difficult task and while some methods exist (van Otterlo
2012), they do not scale for large tasks and are certainly not
easily extensible to multiagent settings. More recently, there
is a significant interest in leveraging the combination of clas-
sical Planning and RL (Kokel et al. 2021; Illanes et al. 2020)
that allows solving complex tasks by effectively decompos-
ing higher-level tasks and efficiently learning generalizable
lower-level policies.

Inspired by the success in different fields, we propose
a method that leverages the power of a relational plan-
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ner to act as a centralized controller for multiagent learn-
ing in noisy, relational domains. Our proposed approach,
called multiagent relational planning and RL (MaRePRelL),
uses planning for task decomposition, centralized control,
and agent allocation, StaRAI for reasoning and constructing
task-specific representations, and deep RL for effective and
efficient learning with these smaller representations.

We make the following key contributions: (1) as far as we
are aware, we developed the first multiagent system that gen-
eralizes across multiple objects and relations; (2) we devel-
oped MaRePReL, an integrated planning and learning for-
malism that is capable of multiagent learning under uncer-
tainty in relational domains; (3) We present the architecture
and discuss its key salient features; and (4) finally, demon-
strate the effectiveness and generalization abilities of this ap-
proach in a relational, multiagent extension of the famous
taxi domain (Dietterich 1998).

The rest of the paper is organized as follows: after pre-
senting the required background, we present the architecture
in detail and its key features. Then, we discuss our domains
and results before outlining areas for future research.

Background

Multiagent RL. (MARL) extends reinforcement learning to
systems with multiple agents, where they interact with an
environment to maximize cumulative rewards. MARL in-
troduces unique challenges. First, the curse of dimension-
ality arises due to an exponential increase in state and ac-
tion spaces as the number of agents grows. Second, is the
non-stationary nature of multiagent environments, where the
environment evolves independently of an agent due to the
actions of the other agents. Finally, MARL requires large
amounts of data making it sample inefficient.

The curse of dimensionality has typically been addressed
using functional approximation techniques (Bitzer, Howard,
and Vijayakumar 2010). Centralized training and decentral-
ized execution frameworks like QMIX and MADDPG have
been developed to deal with the non-stationary nature of
the multiagent environments (Kraemer and Banerjee 2016;
Rashid et al. 2020; Lowe et al. 2017). Sample inefficiency is
addressed using generative modeling or mask reconstruction
algorithms (Li et al. 2022; Kim et al. 2023).

Hierarchical approaches (HMARL), utilize task decom-
position and hierarchical structures in multiagent settings



to define appropriate task abstractions. Task hierarchy ab-
straction helps reduce the curse of dimensionality and sam-
ple inefficiency by filtering out irrelevant parts of the state
space. Additionally, the structured task hierarchies facil-
itate effective communication between agents, enhancing
their ability to handle non-stationarity in multiagent systems
(Ghavamzadeh, Mahadevan, and Makar 2006).

However, the algorithms discussed so far are tailored for
tasks with non-relational representations, limiting their ap-
plicability in relational domains like Taxi-world (Dietterich
1999) where the states (and actions) are characterized as a
set of relations between objects and their properties. The
number of objects for a given domain may not be fixed
(Dzeroski, DeRaedt, and Driessens 2001).

Planning and RL methods construct a two-level system
with a higher-level planner inducing the Markov decision
process (MDPs) for the lower-level RL to solve. One such
recent framework, RePReL (Kokel et al. 2021), employs
a hierarchical relational planner to implement task-specific
policies and uses Deep RL to work on hybrid relational do-
mains (Kokel et al. 2023). To interface the higher-level plan-
ner with the Deep RL, a hand-crafted abstract reasoner is
employed to lift the reasoning process and construct smaller
lower-level MDPs that can be solved efficiently.

We extend this framework to multiagent settings by us-
ing the insight that the planner could be used as the task
scheduler for different agents. In our setting, there is a sin-
gle planner at the higher level which acts as a centralized
controller, and several RL agents that learn the lower-level
policies. The key difference to the RePReL framework is to
not just use the planner for decomposing the tasks, but in
addition, to assign these sub-tasks to specific RL agents.

Multi Agent Relational Planning and
Reinforcement Learning (MaRePRelL)

We consider the problem of coordinating multiple agents to
solve relational tasks. We use a combination of relational,
hierarchical planning, and deep reinforcement learning with
the overall framework having the following components.

1. Planner as controller: Our planner acts as a centralized
controller by taking the current state as input and creating
a set of agent-specific plans. It consists of the following
components:

(a) Relational Planner: Since our approach aims to gen-
eralize to an increasing number of tasks and objects,
we implement a relational HTN (i.e., hierarchical task
network) planner to decompose the goals into a tem-
porally ordered series of sub-goals.

(b) Task Distributor: The planner output is typically the
task decomposition and does not bind the tasks to the
specific agents. We use a task distributor to divide the
ordered plan provided into agent-specific sub-plans us-
ing agent constraints for the different tasks.

The planner-distributor combination serves as the cen-
tralized controller.

2. Abstraction Reasoner: Following RePRel, we employ
the use of Dynamic-First Order Conditional Influence
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Figure 1: MaRePReL Architecture

(D-FOCI) statements (Natarajan et al. 2005a) to capture
domain knowledge that is then used to reason and con-
struct the relevant parts of the state space that the lower-
level RL agents then use. In our work, this step is still
hand-crafted as the original work, and leveraging lifted
inference (Van den Broeck et al. 2021) to perform this
step automatically remains a future direction.

3. Multiple Reinforcement Learners: Given the current
sub-task from the planner, the RL agent identified by the
task distributor uses the smaller state space defined by
the abstraction reasoner to learn a generalizable, task-
specific policy. The advantage of this is that these poli-
cies can be shared by the agents when solving similar
tasks (as we demonstrate in our experiments).

The broad overview of our proposed approach is pre-
sented in Figure 1. To recall, the planner decomposes the
higher-level tasks into appropriate lower-level tasks, and the
distributor identifies the appropriate RL agent for the cur-
rent sub-task, thus making this combination an effective cen-
tralized controller. Given the sub-task and the current state
(which can be exponentially large), the abstraction reasoner
constructs the smaller state space. Finally, the RL agent ei-
ther learns the policy or executes ones if already learned (for
instance, agent A1 might have learned the pickup sub-task
that can be used directly by agent A2 when it is required to
execute this specific sub-task. We now present this architec-
ture in greater detail.

We present our multiagent environment as a Markov game
and build upon the framework of relational Markov games,
(Finzi and Lukasiewicz 2004), by expanding its capabilities
to address goal-oriented problems.

Definition 1: A goal-directed relational
Markov Games (GRMG) is represented as M =
(N,S,Al.n,P,Ricn,7,G) where N is the number
of agents, S is the set of states, A’ is the set of actions for
the i*" agent, and A == A' x A? x ... x AN is the joint



action space, P = Pr(s'|s,a) is the transition probability
function for transitioning from s to s’ where s,s' € S and
a € AR =S xAxS — Ris the reward function
for the it" agent, representing the instantaneous reward
received by the agent on transitioning from one state to next
after taking an action, v € [0, 1) is the discount factor G is
the set of goals, the agents are tasked with achieving. The
states S and actions A are defined by the set of objects E,
predicates QQ, and action types Y.

MaRePReL solves GRMGs using a combination of mul-
tiagent planning and RL as shown in Figure 1. A prob-
lem instance for a GRMG is defined similarly to in GR-
MDP (Kokel et al. 2021) as a pair (s € S,g € G), where
s and g are the initial and the goal state, defined by a set of
positive or negative literals. A solution provided by our ap-
proach is a joint policy that originates from state s and leads
to a state satisfying all goals in g.

Relational Planner

The first module of our algorithm is the relational plan-
ner. The environment’s state can be represented as an ab-
stract planning problem using a planning description lan-
guage (Holler et al. 2019). The hybrid planning domain
D = (Q,0,C, M), consists of a set of predicates () that
describes the current state, a finite set of operators O which
are the high-level actions executable by the agents, a set of
ordering constraints C' that is necessary to construct a con-
sistent plan, and methods M that can decompose the goal set
into an ordered sequence of operators. A multiagent plan-
ning (MAP) problem can be defined as follows:

Definition 2: For a given domain D, a multiagent plan-
ning (MAP) problem P = (D, S, G, AG), consists of the
initial state of the problem S, the set of goals G that need to
be completed, and a group of agents AG that need to coor-
dinate together to reach the goal state.

For the above MAP problem, the planner plays a cru-
cial role by controlling the tasks performed by each agent.
It maps an ordered sequence of tasks to each agent, by de-
composing the target set of goals G into a set of grounded
task-specific operators O. Hierarchical Task Network plan-
ners such as SHOP (Nau et al. 1999) can be used to gen-
erate a total order plan for a given instance of the environ-
ment. The grounded plan along with a set of ordering con-
straints is used to distribute the tasks to create agent-specific
plans. A greedy approach is used to schedule tasks that in-
volve forward chaining (Kvarnstrom 2011). It does so by
examining the causal links between operators and prevent-
ing assignments of tasks to agents that cannot execute them.
Given causal links L = (ly,la,- - , 1), which defines the
partial ordering between operations as a link (O, ef f, O,)
where ef f is the effect of completing task O,, and one of the
preconditions for task O, (Weld 1994). Our task distributor
schedules tasks to different agents ensuring the operations
that are causally linked are performed by the same agent.

For each agent a, the task distributor returns a partial plan
I1* = [o1, 02,03, ...,0,] Where o is an operator with I(o)
being the precondition of the operator and 3(o) which is the
necessary effects of the operator. Since the operators only
consider the action space of the agent currently using them,

Algorithm 1: MaRePReL algorithm

Input: Multiagent Planner P, Options O, Agents A, goal
set g, terminal reward ¢, D-FOCI statements F', num of
iterations ¢, num of episodes in each iteration k, batch size
b, terminal reward t

Output: RL policies 7,, Vo € O

1: Initialize the RL policies 7, and buffer D, Yo € O
2: for iteration € i do
3:  for episode € k do

4: s < starting state of the environment

5: IT < P(s,9)

6: ¢ < Pop the first task for each agent from IT

7: while ¢ is not empty do

8: actions < GetAgentActions(s, ¢, m, F, A)

9: s, D, ¢, PlanValid <

PerformStep(s, actions, D, tgr, 11, F, A)

10: if not PlanValid then
11: IT < P(s, g) {Recompute the plan}
12: ¢ < Pop the first task for each agent in II
13: end if
14: end while
15:  end for
16:  for each option 0 € O do
17: Sample batch Dy, from the corresponding buffer D,
18: Update Policy 7, using the buffer D,
19:  end for
20: end for

21: returnm, Yo € O

and the operators are shared among the different agents, all
with the same underlying, we can define the sub-goal RMDP
M, for each operator to solve the problem like in RePReLl
(Kokel et al. 2021).

Task-specific Abstraction

While the planner decomposes the task and the task distribu-
tor identifies the appropriate agent, the resulting state space
can still be prohibitively expensive for effective learning.
Consequently, the abstraction reasoner becomes crucial in
constructing a smaller state space. In GRMG, states are con-
veyed as conjunctions of literals, and we leverage our under-
standing of how predicates impact rewards and option goals.
To extract this knowledge, we employ the extension to First
Order Conditional Influence statements (FOCI) (Natarajan
et al. 2005b) to Dynamic FOCI (D-FOCI) statements as used
in RePReL (Kokel et al. 2021). D-FOCI statements, repre-
sented with an example below are the first-order language
rules used to specify the direct conditional influences be-
tween literals in the domain. The rules defined over the pred-
icates by a domain expert express the relation between do-
main predicates at a different time step.

pickup(P,T) :
{tazi(T, L1),at(P, L)} AN in_taxi(P,T)

The above rule states that when executing a task
pickup(P,T), only the location L1 of taxi T and the pickup



location L of passenger P influence the state predicate
in_taxi. The relational planner provides agent-specific plans
that contain the grounded operators. Substituting the vari-
ables grounded by our planner in the D-FOCI statements
will provide us with the set of literals on which our task-
based RL policies can be trained. If the sub-plan for agent
t1 contains the grounded operator pickup(pl,t1), we can
use the substitution ¢ = {P/pl,T/t1,L/r,L1/I1} to get
the following grounding,

pickup(pl, t1) :
{taxi(tl,i1),at(pl,r)} RN in_taxi(pl, tl)

which provides us with information on the relevant state
literals for the task pickup(pl,tl) as taxi(tl,11), at(p,r),
and in_taxi(pl,t1). This implies that the task of picking up
pl, when assigned to ¢1, only needs the information above,
and the locations and in-taxi conditions of other passengers
and taxis in the domain can be masked while learning an RL
policy.

Proposed Algorithm

In the MaRePReL learning procedure, outlined in Algo-
rithm 1, we initialize the RL policies and buffers for vari-
ous operators at the start (line 1). We obtain a partial plan
for each agent by utilizing our relational multiagent plan-
ner implemented through a SHOP (Nau et al. 1999) plan-
ner with branch and bound scheduling. The policies learned
through our approach are a collection of task-specific op-
erations. While one or more agents still have pending sub-
tasks, we continuously collect trajectories from the environ-
ment for different operators, storing them in respective op-
erator buffers (lines 7-15). The joint action for the agents is
computed based on the current state, tasks, policies, and D-
FOCI statements using the GetAgentActions method (line
8). Upon obtaining the joint action, we perform a step update
using the PerformStep method. This step involves updating
the state, buffers, plan, and tasks based on the D-FOCI rules
for abstractions. Following RePReL’s approach, the method
returns the updated components along with a flag indicating
the validity of the current plan. If the plan is deemed invalid,
anew plan is computed, and agent tasks are reassigned (lines
10-12). Subsequently, the policies are updated based on the
operations buffer. The methods GetAgentActions and Per-
formStep This iterative process continues until all subtasks
are completed, ensuring the MaRePReL algorithm adapts
dynamically to the evolving multiagent environment.

Experimentation and Results

We present our results in the multiagent relational taxi do-
main and answer the following questions explicitly. Evalua-
tion on more domains is our immediate future direction.

1. Sample Efficiency: Does MaRePReL improve sample
efficiency compared to standard baselines?

2. Generalization: Does MaRePReL generalize to vary-
ing number of objects?

Relational Multiagent Taxi World

For our experiments, we extend the relational taxi domain
environment (Dietterich 1999) to a relational multiagent set-
ting. The domain involves two taxis navigating a grid to
transport passengers. The goal is to learn a multiagent pol-
icy for transporting passengers from their current locations
to their destinations. Passengers are located at four different
grid positions—R, G, B, and Y—requiring coordinated ef-
forts from the taxis for pickup and drop-off. An important
property in this relational multiagent taxi world is that Taxis
cannot cross each other or occupy the same location in any
state since doing so would cause crashes. We have designed
the environment to return huge negative rewards and termi-
nate the episode whenever a crash occurs. This property of
the environment introduces non-stationarity in the environ-
ment since the actions of one agent are influenced by the
actions of other agents, posing challenges for independent
policies. We evaluate our algorithms on three tasks of trans-
porting passengers to their respective destinations

1. Task 1: Transporting 2 passengers
2. Task 2: Transporting 3 passengers
3. Task 3: Transporting 4 passengers

We assume that only one passenger is allowed in the taxi and
for ease of discretization, that each grid location can have
at most one passenger in it. Relaxing these assumptions is
beyond the scope of this paper.

Baselines

We compare MaRePReL against other multiagent baselines:
independent DQN (IDQN) (Mnih et al. 2015) (with and
without full parameter sharing) and QMIX (Rashid et al.
2020). In IDQN, each agent maintains a decentralized state-
action value function, updating its Q-values solely based on
local observations and received rewards. For QMIX, a pa-
rameterized mixing network computes the joint Q-value.

Results

Sample Efficiency: MaRePRel. is compared against
QMIX and IDQN. All three algorithms are limited to 3
million environment steps. Unlike MaRePReL, IDQN and
QMIX converge to suboptimal rewards, as shown in Figure
3. While analyzing the success rate (Figure 2), our algo-
rithm did not yet converge to an optimal policy, but it ex-
hibits progress in learning the task. In contrast, IDQN and
QMIX show near 0O success rates. The difficulty in learn-
ing can be attributed to the non-stationarity of the environ-
ment and the high penalty of crashes. MaRePReL. demon-
strates statistically significant higher sample efficiency than
the compared algorithms, affirmatively answering Q1.

Generalization: In this set of experiments, the policies are
not randomly initialized. Instead, we learn the policy from
Task 1 (transport two passengers) and apply it to Task 2
(transport three passengers). MaRePReL significantly im-
proves sample efficiency, achieving Task 2’s success rate and
episode reward in less than half a million steps, compared to
3 million steps for the non-transferred policy. Other algo-
rithms do not show improved performance since they have
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no initial success rate. Regarding rewards, QMIX quickly
converges to a similar suboptimal reward. At the same time,
DQN without parameter sharing remains unchanged, and
DQN with parameter sharing exhibits a significant decrease
later in the run.

Discussion and Future Work

As can be observed from the experiments, MaRePReL sig-
nificantly outperforms traditional MARL approaches, in-
cluding IDQN (with and without parameter sharing) and
QMIX. Our results (admittedly from a single domain)
demonstrate the effectiveness of combining a relational
planner with an agent-specific task distributor at the higher
level and deep reinforcement learning at the lower level. Sig-
nificant improvements can be observed in both learning and
generalization. However, the scalability of our methodology
with an increasing number of agents remains untested, and
we plan to expand our testing to other multiagent domains,
comparing it with additional baselines.

Our approach has a few limitations. As the number of
operators and agents increases, the search space for the re-
lational planner grows exponentially, posing challenges for
generalization. Our current formalism applies only to prob-
lems featuring a fully observable state space. Moreover, the
cooperation shown between agents is loosely coupled as
they work in parallel to complete the tasks assigned by a
centralized planner. It is possible to extend our approach
to tackle challenges in domains that demand coordination
among multiple agents (Samvelyan et al. 2019; Christianos,
Schifer, and Albrecht 2020) by incorporating a partial-order
planner along with wait operators. This extension would al-
low all agents to achieve a state that fulfills the preconditions
before performing the joint task. Our hand-coded abstrac-
tion reasoner can be replaced by an effective lifted inference
method. Finally, constructing a full end-to-end differentiable
system is an interesting direction for future research.
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