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1 Introduction

Statistical Relational Learning models (SRL) [7, 37] combine the representa-
tional power of logic with the ability of probability theory specifically, and
statistical models in general to model noise and uncertainty. They have gen-
erally ranged from directed models [15, 21, 10, 12, 22, 14] to undirected mod-
els [38, 40, 18]. We consider the more recent, well-understood directed model
of Relational Logistic Regression (RLR) [12, 13, 5]. One of the key at-
tributes of RLR is that they are population size invariant [34], i.e., they scale
well with increase in population sizes unlike other methods such as Markov
Logic Networks [4]. Thus, they are a natural choice as a powerful modeling
tool for many tasks [35, 36].

While the models are attractive from the modeling perspective, learning
these models is computationally intensive. This is due to the fact that (like
the field of Inductive Logic Programming) learning occurs at multiple levels
of abstraction, that of the level of objects, sub-group of objects and relations
and possibly at the individual instances of the objects. One could learn at the
level of an individual, say ‘David‘ or at the level of Professors or at the level of
Persons. Hence, most methods for learning these models have so far focused on
the task of learning the so-called parameters (weights of the logistic function)
where the rules (or relational features) are provided by the human expert and
the data is merely used to learn the parameters.

Previous work on Structural Logistic Regression by Popescul and Un-
gar [35] proposed a link prediction approach that generates and searches over
a space of relational features using the Bayesian Information Criterion (BIC)
score to learn the best set of link predictors. However, the complexity of search-
ing a large feature space and avoiding over-fitting makes it difficult to be em-
ployed on large data sets. In other supervised learning approaches, a “flat”
feature vector representation for each link is created. Thus, the prediction
made for the possible set of links is independent of the other predictions. Our
approach explicitly does not make this assumption and allows for learning in
the presence of rich relational data.

We consider the problem of full model learning, also known as structure
learning of RLR models. A simple solution to learning these models could
be to learn the rules separately using a logic learner and then employ the
parameter learning strategies [11]. Huynh and Mooney use ALEPH [39] to
learn the structure, followed by L1-regularized logistic regression to learn the
weights for automatic feature selection. While reasonably easy to implement,
the key issue is that the disconnect between rule and parameter learning can
result in poor predictive performance as shown repeatedly in the literature [32,
38]. Inspired by the recent successes of non-parametric learning methods for
SRL models [8, 16, 33, 31, 32], we develop a non-parametric learning method
for full model learning (structure and parameters) of RLR models.

More specifically, we develop a gradient-boosting technique for learning
RLR models. We derive the gradients for the different weights of RLR and
show how the rules of the logistic function are learned simultaneously with
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their corresponding weights. Unlike the standard adaptations of the functional
gradients, RLR requires learning a different set of weights per rule in each
gradient step and hence requires learning multiple weights jointly for a single
rule. As we explain later, the gradients correspond to a set of vector weighted
clauses that are learned in a sequential manner.

Each clause can be seen as a relational feature for the logistic function.
We also note that RLR can be viewed as a probabilistic combination func-
tion in that it can stochastically combine the distributions due to different set
of parents (in graphical model terminology). Hence, if our learning technique
is employed in the context of learning joint models, our work can be seen
as a new interpretation of learning boosted Relational Dependency Networks
(RDNs) [22, 32], where the standard aggregators are replaced with a logis-
tic regression combination function which could potentially yield interesting
insights into directed SRL models. We demonstrate the effectiveness of this
combination function on real data sets and compare against several baselines
including the state-of-the-art MLN learning algorithms.

The rest of the paper is organized as follows: first we introduce the neces-
sary background and the notations. Next, we derive the gradients and present
the algorithm for learning RLR models. Finally, we conclude the paper by
presenting our extensive experimental evaluations on standard SRL data sets
and outlining the areas for future research.

2 Background and Notation

In this section, we define our notation and provide necessary background for
our readers to follow the rest of the paper. Throughout the paper, we assume
True is represented by 1 and False is represented by 0.

2.1 Logistic Regression

Let @ be a Boolean random variable with range {1, 0} whose value depends on
aset {X1, Xo,..., X, } of random variables. Logistic regression [25] defines the
conditional probability of @) given X1, Xo, ..., X,, as the sigmoid of a weighted
sum of X;s:

Prob(Q=1]X1,....,Xp) =oc(wo+ w1 X1 + - +w, Xy,) (1)

where o(z) = 1/(1 4 exp(—z)) is the sigmoid function.

2.2 Finite-Domain, Function-Free, First-Order Logic

A population is a finite set of objects. We assume for every object, there is a
unique constant denoting that object. A logical variable (logvar) is typed
with a population. A term is a logvar or a constant. We show logvars with



4 Nandini Ramanan et al.

lower-case letters (e.g., x) , constants with upper-case letters (e.g., X), the
population associated with a logvar « with IT,, and the size/cardinality of the
population with |IT,|. A lower-case letter in bold represents a tuple of logvars
(e.g., x), and an upper-case letter in bold is a tuple of constants (e.g., X).

An atom is of the form Q(¢1,...,%;) where Q is a functor and each ¢; is
a term. When range(Q) = {1,0}, Q is a predicate. A substitution is of the
form 0 = {(x1,...,zk)/({t1,...,tx)} where x;s are logvars and ¢;s are terms. A
grounding of an atom with logvars x1, ...,z is a substitution {(z1,...,z)/
(X1,...,Xk)} mapping each of its logvars to a constant in the population of the
logvar. For a set A of atoms, G(A) represents the set of all possible groundings
for the atoms in A. A literal is an atom or its negation. A formula ¢ is a
literal, the conjunction of two formulae ¢1 Ao, or a disjunction of two formulae
1 V 2. The application of a substitution 8 = {{(z1,...,zk)/{t1,...,tx)} on a
formula ¢ is represented as ¢ and replaces each x; in ¢ with ¢;. An instance
of a formula ¢ is obtained by replacing each logvar z in ¢ by one of the
objects in IT,. A conjunctive formula contains no disjunction. A weighted
formula (WF) is a triple (¢, wr, wr) where ¢ is a formula and wr and wg
are real numbers.

2.3 Relational Logistic Regression

Let Q(x) be a Boolean atom whose probability depends on a set A of atoms
such that Q ¢ A i.e. we do not allow recursive clauses. We refer to A as
the parents of Q. Let ¢ be a set of WFs containing only atoms from A,
J be a function from groundings in G(A) to truth values, and 0 = {x/X}
be a substitution from logvars in x to constants in X. Relational logistic
regression (RLR) [12] defines the probability of Q(X) given J as follows:

Proby,(QX)=1]|J) =

(2)
olwo+ D wrenr(@d,J) +we - ne(ed, J)

(p,wr,wp)EY

where wy is a bias/intercept, nr(¢f, J) is the number of instances of ¢ that
are true with respect to J, and ngr(¢f,J) is the number of instances of 6
that are false with respect to J. Note that nr(True, J) = 1. Also note that the
bias can be considered as a WF whose formula is True. Following Kazemi et
al. [12], without loss of generality we assume the formulae of all WFs for RLR
models are conjunctive.

Ezample 1 Let active(p), advisedBy(s,p), and phd(s) be three atoms repre-
senting respectively whether a professor is active, whether a student is ad-
vised by a professor, and whether a student is a PhD student. Suppose we
want to define the conditional probability of active(p) given the atoms A =
{advisedBy(s, p), phd(s)}. Consider an RLR model with an intercept of —3.5
which uses only the following WF to define this conditional probability:
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4 = {(advisedBy(s, p) A phd(s), 1,0)}
According to this model, for an assignment J of truth values to G(.A):

Proby(active(P) =11 J) =
0(—3.5+ 1 - nr(advisedBy(s, P) A phd(s), J)),

where nr(advisedBy(s, P) A phd(s),J)) = #S € Il s.t. advisedBy(S, P) A
phd(S) according to J, corresponding to the number of PhD students advised
by P. We denote the count for instances of satisfied groundings as #. When
this count is greater than or equal to 4, the probability of P being an active
professor is closer to one than zero; otherwise, the probability is closer to zero
than one. Therefore, this RLR model represents “a professor is active if the
professor advises at least 4 PhD students”.

With this background on Relational Logistic Regression, we introduce the
Functional Gradient Boosting paradigm in the following section. This enables
us to formulate a learning problem for RLR in which we learn both the struc-
ture and the parameters simultaneously.

2.4 Functional Gradient Boosting

We discuss the functional gradient boosting (FGB) approach in the con-
text of relational models. This approach is motivated by the intuition that
finding many rough rules-of-thumb of how to change one’s probabilistic pre-
dictions locally can be much easier than finding a single, highly accurate model.
Specifically, this approach turns the problem of learning relational models into
a series of relational function approximation problems using the ensem-
ble method of gradient-based boosting. This is achieved by the application
of Friedman’s [6] gradient boosting to SRL models. That is, we represent the
conditional probability distribution as a weighted sum of regression models
that are grown via a stage-wise optimization [32, 17].

The conditional probability of an example y;' depends on its parents x; =
parents(y;). The goal of learning is to fit a model Prob(y|x) o e?*) which
can be expressed non-parametrically in terms of a potential function ¥ (y;; x;):

e (is xi)
Zy’ e (y'5%4)

At a high-level, we are interested in successively approximating the func-
tion 1 as a sum of weak learners, which are relational regression clauses, in

our setting. Functional gradient ascent starts with an initial potential 1y and
iteratively adds gradients A;. After m iterations, the potential is given by

Prob(y; |x;) = (3)

1 We use the term example to mean the grounded target literal. Hence y; = 1 denotes
that the grounding Q(X) = 1 i.e., the grounded target predicate is true. Following standard
Bayesian networks terminology, we denote the parents A(Q) to include the set of formulae
1 that influence the current predicate Q.
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w; : professor(b) Aprofessor(a) - advisedBy(a,b)

w, : professor(b) A —professor(a) A coauthor(a,b) - advisedBy(a, b)
wy : professor(b) A aprofessor(a) A ~coauthor(a,b) — advisedBy(a,b)
wy = —professor(b) — advisedBy(a, b)

Fig. 1 Example of relational regression clauses (RRCs). The task was to predict if A is
AdvisedBy B, given the relations of people at a university.

Tow ] 2

m
W —— b
Initial Model Vs = W and brenf

" preictions | Y
anb bacad lPredictions ‘ m ! '

st i
aAbe bAc —
| Iterate
+
+ - anb bAcnd aAbe bac and bAeAf
Final Model = + \l + \{/ + +
t t

Fig. 2 Relational Functional Gradient Boosting. This is similar to standard functional
gradient boosting (FGB) where trees are induced stage-wise; the key difference is that these
trees are RRCs.

Um = Yo + Ay + ... + Ay, Here, A, is the functional gradient at episode
m and is

Ap =Vm FE

X,y ) 0 log PTOb(y | X5 1brnfl) ) (4)
¢m—1

where v, is the learning rate. Given that the expectation E, ,[..] cannot be
computed exactly as the joint distribution Prob(x,y) is unknown, functional
gradient based methods treat the data as a proxy for this joint distribution [3].
More precisely, Dietterich et al. suggested evaluating the gradient for each
training example and fitting a small regression function (potentially a tree)
to the pseudo-residuals from a regression at each iteration i.e., fit a regression
tree hy, on the training examples [(z;, y;), Am (yi; x;)]. They point out that al-
though the fitted function h,, is not exactly the same as the desired 4,,, it will
point in the same direction (assuming that there are enough training exam-
ples). Thus, ascent in the direction of h,, will approximate the true functional
gradient.

Note that in the functional gradient presented in Equation (4), the expecta-
tion Ex , cannot be computed as the joint distribution Prob(x, y) is unknown.
Instead of computing the functional gradients over the potential function, they
are instead computed pointwise for each labeled training example i: (x;, y;)-
Now, this set of local gradients become the training examples to learn a weak
regression model that approximates the gradient A,, at stage m.
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The functional gradient with respect to ¥ (y; = 1; x;) of the likelihood for
each example (y;,x;) can be shown to be:

0log Prob(y;; x;)
IMp(yi = 1; x;)

where I is the indicator function, that is 1, if y; = 1, and 0 otherwise. This
expression is simply the adjustment required to match the predicted probability
with the true label of the example. If the example is positive and the predicted
probability is less than 1, this gradient is positive indicating that the predicted
probability should move towards 1. Conversely, if the example is negative and
the predicted probability is greater than 0, the gradient is negative driving the
value the other way.

This elegant gradient expression might appear simple, but in fact, naturally
and intuitively captures, example-wise, the general direction that the overall
model should be grown in. The I — P form of the functional gradients is a
consequence of the sigmoid function as a modeling choice, and is a defining
characteristic of FGB methods. As we show below, our proposed approach to
RLR also has a similar form. The significant difference, however, is in the novel
definition of the potential function 1.

In prior work, relational regression trees (RRTs) [1] were used to fit the
gradient function A,, to the pointwise gradients for every training example.
Each RRT can be viewed as defining several new feature combinations, one
corresponding to each path from the root to a leaf. A key difference in our
work is that we employ the use of weighted formulae (vector-weighted clauses?,
to be precise) as we explain later. From this perspective, our work is closer
to the boosting MLN work that employed the use of weighted clauses [17].
We generalize this by learning a weight vector per clause that allows for a
more compact representation of the true and false instances of the formula.
An example of a weighted clause is provided in Figure 1 where there are four
clauses for predicting advisedBy(A,B).

Note that while we show that the standard weighted clauses are similar
to a MLN, our weighted clauses have an important distinction. Correspond-
ing to each clause is a weight vector instead of a single scalar weight which
captures the weight of true groundings, false groundings and the uninformed
prior weights of the clause. The gradient-boosting that we develop in the next
section builds upon these clauses and as mentioned earlier is similar to MLN
boosting with the key difference being that instead of learning one weight per
clause, we learn three weights in the vector.

The key intuition with boosting regression clauses is that each clause will
define a new feature combination and the different clauses together capture
the latent relationships that are learned from the data. While the final model
itself is linear (as it is the sum of the weighted groundings of all the clauses),
the clauses themselves define richer features thus allowing for learning a more
complex model than a simple linear one. Figure 2 presents the schematic for

=I(y; = 1;%;) — Prob(y; = 1;%;) (5)

2 We use formulae and clauses interchangeably from hereon.
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boosting. The idea is that first a regression function (shown as a set of clauses)
is learned from the training examples and these clauses are then used to de-
termine the gradients (weights) of each example in the next iteration. The
gradient is typically computed in the prior work as I — P. Once the examples
are weighted, a new set of clauses are induced from them. These clauses are
then considered together and the regression values are added when weighing
the examples and the process is iterated.

There are several benefits of the boosting approach for learning RLR mod-
els. First, being a non-parametric approach (i.e., the model size is not chosen in
advance), the number of parameters naturally grows as the number of training
episodes increases. In turn, relational features as clauses are introduced only
as necessary, so that a potentially large search space is not explicitly consid-
ered. Second, such an algorithm is fast and straightforward to implement. One
could potentially employ any relational regression learner in the inner loop to
learn several types of models. Third, as with previous relational models, the
use of boosting for learning RLR models makes it possible to learn the struc-
ture and parameters simultaneously making them an attractive choice
for learning from large scale data sets [24, 42].

3 Functional Gradient Boosting for RLR
3.1 Preliminaries

Given the background on RLR and the gradient-boosting approach, we now
focus on the learning task of RLR. Let us rewrite the conditional probability
of an example y given weighted formulae (@1, w1, wr1), -, (Pk, Wk, Wrk)
corresponding parents Ry, --- , R in the RLR model as:

Prob(y =1|Ry, -+ ,Rg) =0 (wy
+ wrnr(p10, R1) + wr1 - nr(v16, R1)
Jr PN
+wrknr(ert, Bi) + wrg - nr (e, Ri))  (6)

where o () is the sigmoid function. For example, let y = Popularity(a) indicate
the popularity of a professor a. Consider two formulae ¢;=Publication(A, P)
and ¢o=AdvisedBy(A,S). The weights of the first formula control the influ-
ence of the number of publications on the popularity of the professor where
R; = Publication(a, P). Similarly the second formula controls the influence
of the number of students advised by the professor. For learning a model for
RLR, we thus need to learn these clauses ¢; and their weights wr;, wg; (the
parents are determined by the structure of the clause). Also, we can assume
that the bias term wy can be part of the weight vectors for all the learned
clauses. This allows a greedy approach that incrementally adds new clauses,
such as FGB, to automatically update the bias term by learning wqg for each
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new clause. Our learning problem can be defined as:

Given: A set of grounded facts and the corresponding positive and negative
grounded literals (examples)

To Do: Learn the best set of formulae ; with their corresponding weight vector
w; = [wo, w1, ws] that minimizes the loss function.

To simplify the learning problem, we introduce vector-weighted clauses
(formulae), denoted as w: Clause, that are a generalization of traditional
weighted clauses with single weights. More specifically, our weighted clauses
have three dimensions, i.e., w = [wg, w1, wz]’, where wy is a bias/intercept,
wy is the weight over the satisfiable groundings of the current clause (analo-
gous to wr;) and ws is the weight of the unsatisfiable groundings of the current
clause (analogous to wg;). We also use a short hand notation ¢; and f; for the
two grounding counts nr(@;0, R1) and np(p;0, R1) respectively in Equation 6.

Example 2 Consider an RLR model for defining the conditional probability of
y = popularity(a) which has only one WF:

(publication(a, b), wr, wr) =

[wo, w1, ws] : popularity(a) :— publication(a, b)

Let t, = ), publication(a, b) be the number of instances of b for which
publication(a, b) is true for the current grounding of y, and let f, = >, (1 —
publication(a, b)) be the number of instances of b for which publication(a, b) is
false for the example y. Using vector-weighted clauses in the RLR model, we
can compute

Prob(popularity(a)|publication(a, B)) =
o (wo + w1 -ty +ws - fy), Va.

3.2 RFGB for RLR

Our goal is to learn the full structure of the model, which involves learning
two concepts — the structure (formulae/clauses) and their associate parameters
(the weight vectors). To adapt functional gradient boosting to the task of
learning RLR, we map this probability definition over the parameter space
wp, w1, ws to the functional space, ¥:

Prob(y; = 1|x;) =0 (¢ (yi; %)) =
U('w(]+w1 'ti+w2'fi)

(7)

Recall that in FGB, the gradients of the likelihood function with respect
to the potential function are computed separately for each example. Corre-
spondingly, the regression function 1 for the i-th example needs to be clearly
defined and is:

w(yi; X,‘) = wy + wy-t; + wo - fi. (8)
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The key difference to the existing gradient boosting methods for RDNs [32]
and MLNs [17] is that the RLR learning algorithm needs to learn a weight
vector per clause instead of a single weight.

Also, recall that while in traditional parametric gradient-descent, one would
compute the parametric gradient over the loss function and iteratively update
the parameters with these gradients, for gradient boosting, we first compute
the functional gradients over the log-likelihood given by:

A(yi; xi) = I(y; = 1) — Prob(y; = 1; x;) 9)

where 1 is the indicator function. As with other relational functional gradients
(see Section 2.4), this elegant expression naturally falls out when the log-
likelihood of the sigmoid is differentiated with respect to the function. As
before, the gradient is simply the adjustment required for the probabilities to
match the observed value (y;) in the training data for each example. Note that
this is simply the outer gradient, that is, the gradient is computed for each
example and a single vector-weighted clause needs to be learned for this set
of gradients. While learning the clause itself, we must optimize a different loss
function as we show next.

In order to generalize beyond the training examples, we fit a regression
function ¢ (which is essentially a vector-weighted clause) over the training ex-
amples such that the squared error between ¥ (y;; x;) and the functional
gradient A(y;; x;) is minimized over all the examples. The inner loop thus
amounts to learning vector-weighted clauses such that we minimize the (reg-
ularized) squared error between the RLR model and the functional gradients
over the n training examples:

n
) L v ))2
%ﬂﬁfZ¥W+MQ+Wﬁ Al (10)

+ Awj + wi + w3),

where A > 0 is a regularization parameter. In principle, A can be chosen
using a line search with a validation set when the size of the data sets are
large. However, in our data sets, we only consider our A\ from within the set
(102,...,1035). We pick the best A using the tuning set and we report the
performance on test. We also perform experiments to demonstrate that as
long as A is within the set (102, ...,10%?), our algorithm is not sensitive in
most domains.

Close inspection of the loss function above reveals that solving this opti-
mization problem amounts to fitting count features: ¢, = [1, ¢;, f;] for each
grounded example i to the corresponding functional gradient, A;. Note that
the equation ( 10) can be viewed as a regularized least-squares regression prob-
lem to identify weights w = [wg, wy, w2]T. The problem (10) can be written
in vector form as

min [|Cw — AH2 + )\||WH2
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where the i-th row of the count matrix C' are the count features c; of the
i-th example. This problem has a closed-form solution that can be computed
efficiently:

w = (CTC + Ax)7*CT A, (11)

The quantity CTC captures the count covariance across examples, while
the quantity CT A captures the count-weighted gradients:

n St > fi
it Yoty Yo tifi |,

ctc = |2
Z?:1 fi Z?:1 tifi Z?:1 fZQ

(12)
CTA = | S ;A
| 2o fiddi

In this manner, functional gradient boosting enables a natural combination
of conditionals over all the examples. This weight update forms the backbone
of our approach: boosted relational logistic regression or B-RLR.

3.3 Algorithm for B-RLR

Algorithm 1 Boosted Relational Logistic Regression (B-RLR) learning

1: function B-RLR(Data,p)
2: where Data = {(X,Y)}

3: Fo: =7

4: for 1 <m < M do > M gradient steps

5: Fp = Fpq

6: for y € Yp do > Iterate through target predicates

7 Sp := COMPUTEGRADIENTS(y, Data, Fiy) > Compute gradients, A; for y;

8: $m = FITREGRESSION(Sp, Data, y) > Learn vector-weighted regression
clause

9: Fy, = Fpy + @ng > Update model

10: end for

11: end for

12: return F),

13: end function

We outline the algorithm for boosted RLR (B-RLR) learning in Algorithm 1.
We initialize the regression function with an uniform prior v ie. Fo(y;) =
v (line 2). Given the input training examples Y which correspond to the
grounded instances of the target predicate y and the set of facts, i,e., the
grounded set of all other predicates (denoted as X) in the domain, the goal is
to learn the set of vector-weighted clauses that influence the target predicate.

Since there could potentially be multiple target predicates (when learning
a joint model such as a RDN where each influence relation is an RLR), we
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denote the current predicate as y from Yp. In the m*" iteration of functional-

gradient boosting, we compute the functional gradients for these examples
using the current model F,,, and the parents of Y, as per this model (line 7).
Given these regression examples S, we learn a vector-weighted clause using
FITREGRESSION. Our algorithm is restricted to learn only non-recursive Horn
clauses. FITREGRESSION uses all the other facts X to learn the structure and
parameters of the clause. We then add this regression function, 1[)m approxi-
mating the functional gradients to the current model, F;,,. We repeat this over
M iterations where M is typically set to 10 in our experiments.

Next, we describe FITREGRESSION to learn vector-weighted clauses from
input regression examples S, Data D and target predicate p(z) in Algorithm 2.
We initialize the vector-weighted clause with empty body and zero weights i.e.
[0,0,0]T : y :— @. We first create all possible literals that can be added to
the clause given the current body (line 5). We use modes [29] from inductive
logic programming (ILP) to efficiently find the relevant literals here.

For each literal ! in this set, we calculate the true and false groundings for
the newly generated clause by adding the literal to the body (line 9). To per-
form this calculation, we ground the left hand side of the horn clause (i.e., the
query literal) and count the number of groundings of the body corresponding
to the query grounding. For instance if the grounding of the query is ad-
visedBy(John,Mary) corresponding to advisedBy(student,prof ), then we count
the number of instances of the body that correspond to John and Mary. If the
body contains the publications in common, they are counted accordingly. If
the body is about courses John took, they are counted correspondingly. This
is similar to counting in any relational probabilistic model such as MLNs or
BLPs [19, 15]. Following standard SRL models, we assume closed-world. This
allows us to deduce the number of false groundings as the difference between
the total number of possible groundings and the number of counted (positive)
groundings.

We can then calculate the count matrix C' and weights w as described
earlier (line 11-12). We score each literal based on the squared error and
greedily pick the best scoring literal I. We repeat this process till the clause
reaches its maximum allowed length (set to 4 in our experiments).

To summarize, given a target, the algorithm computes the gradient for all
the examples based on the expression I — P. Given these gradients, the inner
loop searches over the set of weak predictors (we restrict the possible clauses
to have a maximum length of 4) such that the MSE is minimized. The result-
ing vector-weighted clauses are then added to the set of formula and are then
used for the subsequent steps of gradient computations. The procedure is re-
peated until a preset number of formulae are learned. The search for the most
optimal clause can be guided by experts by providing relevant search informa-
tion as modes [29]. The overall procedure is similar to learning RDNs [32] and
MLNs [17] with two significant differences - the need for multiple weights in
the clauses and correspondingly the different optimization function inside the
inner loop of the algorithm.
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Algorithm 2 Vector-weighted regression clause learning

1: function FITREGRESSION(S, D, p)
2: where S = {(y,A4)}

3: where D = {(X,Y)}
4: body = @; w = [0,0,0]T > Initialize empty clause
5: while len(body) < clause_length do
6: L := PoOSSIBLELITERALS(p(x), body) > Initialize with target predicate p(x) &
Generate potential literals
7 for ¢ € L do > Score each literal
8: clause := ‘y :— body A £
9: C:=0
10: for z; € X do > Calculate groundings per example
11: ti, fi = CALCULATEGROUNDINGS(y, z;, clause)
12: end for
13: C := CREATECOUNTMATRIX({t;, fi})
14: w(l) := (CTC + X)"1CTA. > A is gradient & X is user-defined
parameter
15: score({) := SCOREFIT(w({), A)
16: end for
17: ¢ := arg ming score({)
18: w = w(l)
19: body := body A 2
20: end while
21: return w: y :— body.

22: end function

Given that we have outlined the B-RLR algorithm in detail, we now turn
our focus to empirical evaluation of this algorithm.

4 Experiments and Results

Our experiments will aim to answer the following questions in order to demon-
strate the benefits of B-RLR:

Q1 Does boosting RLR perform as well as or better than other relational
methods?

Q2 Does the boosted method perform better than a significant feature engi-
neered logistic regression approach?

Q3 Does functional gradient boosting perform better than the traditional learn-
ing approaches for clauses and weights?

Q4 Is the proposed approach sensitive with respect to the regularization con-
stant, \?

4.1 Methods Considered

We now compare our B-RLR approach to: (1) MLNs, we used the structure
learning in Alchemy(http://alchemy.cs.washington.edu) [19] with the discrim-
inative weight learning preconditioner scaled conjugate gradient (PSCG) [23].
(2) the AGG-LR approach, which is propositional logistic regression model using
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the aggregate (relational) feature, (3) the ILP-RLR approach where rules are
learned using a logic learner (aleph), followed by weight learning for the formu-
lae [5], (4) ALEPH++EXACTL1 approach is an improved discriminative meth-
ods for learning MLN clauses. It uses exact inference and L1-regularization in-
stead of the normal L2 in order to encourage assigning zero weights to clauses
returned by ALEPH++ [11]. The advantage of ALEPH++EXACTL1 over
ILP-RLR comes from learning a large set of potential clauses, and (5) MLN-B,
which is a state-of-the-art boosted MLN structure learning method [17]. We
evaluate our approach on 1 synthetic data set and 4 real world data sets. Ta-
ble 1 shows the sample aggregate (Relational) features constructed with the
highest weights as generated by AGG-LR.

In contrast to our approach, which performs parameter and structure learn-
ing simultaneously, the ILP-RLR baseline performs these steps sequentially.
More specifically, we use PROGOL [27, 28] for structure learning, followed by
relational logistic regression for parameter learning. Table 3 shows the number
of rules that were learned for each data set by PROGOL. Table 3 also shows
some sample rules with the highest coverage scores as generated by PROGOL.

A natural question to ask is why not compare our method against the
recently successful Boosted Relational Dependency Networks [32] (bRDN)
method. We do not consider this comparison for two important reasons - first
is that the MLN-B has already been compared against bRDN in the original
work and the conclusion was that they were nearly on par in performance in
all the domains while bRDN is more efficient due to the use of existentials
instead of counts when grounding clauses. Consequently, the second reason
is that since our AGG-LR approach heavily employs counts, we considered the
best learning method that employs counts as an aggregator, namely the MLN-B
method. Our goal is not to demonstrate that AGG-LR is more effective than the
well-known MLN-B or the bRDN approaches, but to demonstrate that boosting
RLR does not sacrifice performance of learners and that RLR can be boosted
as effectively as other relational probabilistic models.

4.2 Experimental Setting

To keep comparisons as fair as possible, we used the following protocol: while
employing MLN-B and B-RLR , we set the maximum number of clauses to 3,
the beam-width to 10 and maximum clause length to 4. Similar configurations
were adopted in our clause-learning setting. Gradient steps for MLN-B and
B-RLR were picked as per the performance. For all our baselines we used the
standard settings as provided in the original work with minor modification for
Alchemy alone. We set the evaluation function to auto_.m with min score of
an acceptable clause as 0.6. This configuration improved the overall accuracy
in general.
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Domains Sample Features
WorkedUnder (IMDB)
5 features constructed
AdvisedBy (UWCS)

8 features constructed
Female (Movie lens)

8 features constructed
Cancer (SmCakFr)

3 features constructed
Faculty (WebKB)

4 features constructed

Table 1 This table shows the number of rules used by AGG-RLR for each data set as well
as the features with high weights as picked by LR

count_genres_acted, count_movies_acted

count_publications, count_taughtby

count_movies, average_ratings

no_of_friends, no-of_friends_smoke

count_project, count_courseta

4.3 Data Sets

Smokes-Cancer-Friends: This is a synthetic data set, where the goal is to
predict who has cancer based on the friends network of individuals and their
observed smoking habits. The data set has three predicates: Friends, Smokes
and Cancer. We evaluated the method over the Cancer predicate using the
other predicates with 4-fold cross-validation and A = 103,

UW-CSE: The UW-CSE data set [38] was created from the University of
Washington’s Computer Science & Engineering department’s student database
and consists of details about professors, students and courses from 5 differ-
ent subareas of computer science (Al, programming languages, theory, system
and graphics). The data set includes predicates such as Professor, Student,
Publication, AdvisedBy, HasPosition, TaughtBy etc., Our task is to learn, using
the other predicates, to predict the AdvisedBy relation between a student and a
professor. There are 4, 106, 841 possible AdvisedBy relations out of which only
3380 are true. We employ 5-fold cross validation where we learn from four
areas and predict on the other area with A = 10 in our reported results.

IMDB: The IMDB data set was first used by Mihalkova and Mooney [26] and
contains five predicates: Actor, Director,Movie, Genre, Gender and WorkedUnder.
We predict the WorkedUnder relation between an actor and director using the
other predicates. Following [20], we omitted the four equality predicates. We
set A = 10® and employed 5-fold cross-validation using the folds generation
strategy suggested by Mihalkova and Mooney in [26] and averaged the results.

WebKB: The WebKB data set was first created by Craven et al. [2] and con-
tains information about department webpages and the links between them. It
also contains the categories for each web-page and the words within each page.
This data set was converted by Mihalkova and Mooney [26] to contain only
the category of each web-page and links between these pages. They created
the following predicates: Student, Faculty, CourseTA, CourseProf, Project and
SamePerson from these web-pages. We evaluated the method over the Faculty
predicate using the other predicates and we performed 4-fold cross-validation
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Data Sets Target Types | Predicates | neg:pos Ratio
Sm-Ca-Fr Cancer 1 3 1.32
IMDB WorkedUnder 3 6 13.426
UW-CSE AdvisedBy 9 12 539.629
‘WebKB Faculty 3 6 4.159
Movie Lens | FemaleGender 7 6 2.702

Table 2 Details of relational domains used in our experiments. These data sets have high
ratios of negative to positive examples, which is a key characteristic of relational data sets.

Target (Data Set) Sample rules generated for ILP-RLR using PROGOL
WorkedUnder (IMDB) WorkedUnder(A, B) <:isa(l?,director), is_a(A, actor),
6 rules generated movie(C, A), movie(C, B).
WorkedUnder (A, B) <=genre(B, C), gender(A, male).
AdvisedBy(A, B) <hasPosition(B, E), inPhase(A, D),
publication(C, A), publication(C, B).
AdvisedBy(A, B) <hasPosition(B, D), inPhase(A, E),
publication(F, A).
Female(A) <tmpRatingArgl(B, A), tmpRatingArg2(B, C),
genre(C, g4).
Female(A) <age(A, 4), occupation(A, 0l4).
Cancer(a) <friends(b, a), friends(b, c), smokes(c).
Cancer(a) <=smokes(a).
Faculty(A) <=courseProf (B, A), courseTA(B, C).
Faculty(A) <courseProf (B, A), project(C, A),
samePerson(A, A).

AdvisedBy (UWCS)
16 rules generated

Female (Movie Lens)
7 rules generated

Cancer (SmCakFr)
3 rules generated

Faculty (WebKB)
6 rules generated

Table 3 This table shows the number of rules used by ILP-RLR for each data set as well as
the rules with the highest ||P — NJ|| coverage as returned by PROGOL.

where each fold corresponds to one university with set A set as 102.

Movie Lens: This is the well-known Movielens data set [9] containing in-
formation of about users, movies, the movies rated by each user containing
user-movie pairs, and the actual rating the user has given to a movie. It con-
tains predicates: Age, Genre, Occupation, Year, Ratings and Gender. In our
experiments, we ignored the actual ratings and only considered whether a
movie was rated by a user or not. Also, since Gender can take only two values,
we convert the Gender(person, gender) predicate to a single arity predicate
FemaleGender(person). We learned B-RLR models for predicting FemaleGender
using 5-fold cross-validation with A\ = 103.

A key property of these relational data sets is the large number of negative
examples. This is depicted in Table 2, which shows the size of various data sets
used in our experiments. This is because, in relational settings, a vast majority
of relations between objects are not true, and the number of negative examples
far outnumbers the number of positive examples. In these data sets, simply
measuring accuracy or log-likelihood can be misleading. Hence, we use metrics
which are reliable in imbalanced setting like ours.
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p-value Aleph++ExactLl MLN-B ILP-RLR  AggLR  Alchemy
B-RLR 0.009 0.509 0.773 0.009 0.000
Aleph++ExactL1 0.001 0.010 0.130 0.001
MLN-B 0.236 0.000 0.000
ILP-RLR 0.009 0.000
AggLR 0.001

Table 4 P-values for two-tailed t-test on AUC-PR for UWCSE

4.4 Results

We present the results of our experiments in Figures 3 and 4, which compare
the various methods on two metrics: area under the ROC curve (AUC-ROC)
and area under the Precision-Recall curve (AUC-PR) respectively. From these
figures, certain observations can be made clearly.

First, the proposed B-RLR method is on par or better than most methods
across all data sets. Our approach achieves both significantly higher AUC-
ROC as well AUC-PR than Alchemy on all the domains. We are order of
magnitude faster when compare to the M LN structure and weight learning in
Alchemy. For both Movielens and Smokes-Cancer-Friends data sets, learning
using Alchemy did not complete after a week. Hence, we did not report results
on Alchemy for these two domains. On deeper inspection, it can be seen that
the state-of-the-art boosting method for MLNs is more mixed in ROC-space
when compared to B-RLR . However, it can be clearly seen that B-RLR performs
better in PR-space.

Second, in the WebKB, MovieLens and Smokes-Cancer-Friends domain
where we learn about a unary predicate, the performance of B-RLR is signifi-
cantly better. This yields an interesting insight: RLR models can be natural
aggregators over the associated features. As we are in the unary predicate
setting (which corresponds to predicting an attribute of an object), the counts
of the instances of the body of the clause simply means aggregating over the
values of the body. This is typically done in several different ways such as
mean, weighted mean or noisy-or [30]. We suggest the use of logistic function
with counts as an alternative aggregator that seems effective in this domain
and we hypothesize its use for many relational tasks where aggregation can
yield natural models. RLR can effectively model a link prediction task i.e., it
can be used to determine whether a relation exists between two objects from
their respective properties as well as using other known relations. The formu-
lation of this problem is identical to that of its use in MLNs, with the only
difference that the goal is now to infer the value of C(z,value), instead of
R(x;,x;). The task used in WebKB, MovieLens and Smokes-Cancer-Friends
experiments are examples of link prediction. Also, while MLNs only employ
counts as their features, RLR allows for a more complex aggregation within
the sigmoid function that can use count features in its inner loop. Validating
this positive aspect of RLR models remains an interesting future research di-
rection. These results help in answering Q1 by stating that B-RLR is on par
or significantly better than MLN-B in all domains.
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Fig. 3 Comparing the area under the ROC curve for the proposed B-RLR approach to (1)
MLN in Alchemy, (2) Propositional logistic regression with relational features (AGG-LR),
(3) an approach where rules are learned using a logic learner followed by weight learn-
ing (ILP-RLR), (4) a variant of Aleph to learn ILP clauses followed by parameter learning
(ALEPH++EXACTL1) and (5) state-of-the-art MLN with boosted structure learning (MLN-B).
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Fig. 4 Comparing the area under the Precision-Recall (PR) curve for the proposed B-
RLR approach to (1) MLN in Alchemy, (2) Propositional logistic regression with relational
features (AGG-LR), (3) an approach where rules are learned using a logic learner followed by
weight learning (ILP-RLR), (4) a variant of Aleph to learn ILP clauses followed by parameter
learning (ALEPH++EXACTL1) and (5) state-of-the-art MLN with boosted structure learning
(MLN-B).
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p-value Aleph++ExactLl MLN-B ILP-RLR  AggLR  Alchemy
B-RLR 0.148 0.081 0.061 0.020 0.000
Aleph++ExactL1 0.314 0.069 0.412 0.001
MLN-B 0.078 0.115 0.000
ILP-RLR 0.144 0.021
AggLR 0.001

Table 5 P-values for two-tailed t-test on AUC-PR for IMDB

p-value Aleph++ExactLl MLN-B ILP-RLR  AggLR  Alchemy
B-RLR 0.000 0.004 0.041 0.000 0.000
Aleph++ExactL1 0.030 0.917 0.000 0.001
MLN-B 0.003 0.068 0.000
ILP-RLR 0.004 0.000
AggLR 0.001

Table 6 P-values for two-tailed t-test on AUC-PR. for Smokes-Cancer-Friends

p-value Aleph++ExactLl MLN-B  ILP-RLR  AggLR  Alchemy
B-RLR 0.224 0.014 0.001 0.004 0.000
Aleph++ExactL1 0.802 0.102 0.044 0.001
MLN-B 0.000 0.023 0.000
ILP-RLR 0.546 0.000
AggLR 0.001

Table 7 P-values for two-tailed t-test on AUC-PR for MovieLens

p-value Aleph++ExactLl MLN-B ILP-RLR  AggLR  Alchemy
B-RLR 0.224 0.014 0.001 0.004 0.000
Aleph++ExactL1 0.005 0.002 0.003 0.005
MLN-B 0.911 0.284 0.008
ILP-RLR 0.696 0.002
AggLR 0.005

Table 8 P-values for two-tailed t-test on AUC-PR for WebKB

Third, from the figures, it can be observed that B-RLR significantly outper-
forms AGG-LR in several domains. At the outset, this may not be surprising
since relational models have been shown to outperform non-relational models.
However, the features that are created for the AGG-LR model are the count
features of the type defined in the original RLR work and are more expressive
than the standard features of propositional models. This result is particularly
insightful as the B-RLR model that uses count features, predicates and their
combinations themselves in a formula is far more expressive than simple ag-
gregate features. This allows us to answer Q2 strongly in that the proposed
approach is significantly better than an engineered (relational) logistic regres-
sion approach.

Finally, comparing the proposed approach to a two-step approach of learn-
ing clauses followed by the corresponding weights; B-RLR is significantly better
in both PR-space as well as ROC-space than ILP-RLR & ALEPH+-+EXACTL1 .
Hence, Q3 can be answered by stating that B-RLR model outperforms ILP-
based two-stage learning in all the regions.
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Fig. 5 Sensitivity of the proposed B-RLR approach is analyzed by comparing the Area under
the Precision-Recall (PR) curve as A changes.

Learning Time (seconds)

Aleph++
Alchemy  AGG-LR  ILP-RLR  MLN-B ExgctLl B-RLR
WorkedUnder (IMDB) 1482.63 0.25 18.35 34.94 36.11 54.76
AdvisedBy (UWCS) 105462 0.58 54.33 92.00 61.09 123.55
Female (Movie Lens) - 1.98 22.73 26.63 111.18 66.03
Cancer (SmCaFr) - 1.06 52.81 603.67 91.23 452.34
Faculty (WebKB) 26792 0.14 11.89 22.70 55.33 23.44

Table 9 Comparing the average learning time (in seconds) for the proposed B-RLR approach
to (1) standard logistic regression with relational information (AGG-LR), (2) an approach
where rules are learned using a logic learner followed by weight learning (ILP-RLR), and (3)
state-of-the-art MLN with boosted structure learning (MLN-B). Learning time includes time
to learn the structure, counting the satisfied (or unsatisfied) groundings and weight learning.

We answer Q4 using the results from Figure 5: as long as A is within
the set (102, ...,10%?), our algorithm is not sensitive in most domains. The
arguments follow [41], and we pick our A from the specific range using domain
knowledge. We pick our A from this given range for each data set based on
a tuning set. We learn on (n — 1) folds and test on the remaining fold. It
must be mentioned that our parameter A has a nice intuitive interpretation:
they reflect and incorporate the high class imbalance that exists for real-world
domains where this is an important practical consideration.

We used paired t-test with p-values=0.05 for determining the statistical
significance. Tables [4-8] shows the t-test results on the AUC-PR values. From
the figures 3 & 4, across most domains, we observe that, B-RLR has tighter
error bounds compared to the baselines in majority of domains indicating lower
variance and subsequently higher generalization performance.

Table 9 reports the training time taken in seconds by each method aver-
aged over all the folds in every domain. Timings reported for AGG-LR include
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time taken for propositional feature construction and weight learning using
WEKA tool. For ILP-RLR & ALEPH+-+EXACTL1, it includes the total time
taken to learn rules, count satisfied instances, and learn weights for the rules
accordingly. The two boosted approaches timings are reported from the full
runs. The results show that the methods are comparable across all the domains
- in the domains where boosted methods are faster than the other baselines,
grounding of the entire data set caused the increased time for the baselines.
Conversely, in the other domains, repeated counting of boosting increased the
time in two of the five domains. The results indicate that the proposed B-RLR
approach does not sacrifice efficiency (time) for effectiveness (performance).

In summary, our proposed boosted approach appears to be promising
across a diversity of relational domains both in terms of effectiveness as well
as efficiency.

5 Conclusions

We considered the problem of learning relational logistic regression (RLR)
models using the machinery of functional-gradient boosting. To this end, we
introduce an alternative interpretation of RLR models that allows us to con-
sider both the true and false groundings of a formula within a single equation.
This allowed us to learn vector-weighted clauses that are more compact and
expressive compared to standard boosted SRL models. We derived gradients
for the different weights, and outlined a learning algorithm that learned first-
order features as clauses and the corresponding weights simultaneously. We
evaluated the algorithm on standard data sets, and demonstrated the efficacy
of the learning algorithm.

There are several possible extensions for future work, currently, our method
learns a model for a single target predicate deterministically. As mentioned ear-
lier, it is possible to learn a joint model across multiple predicates in a manner
akin to learning a relational dependency network (RDN). This can yield a new
interpretation for RDNs based on combining rules. Second, learning from truly
hybrid data remains a challenge for SRL models in general, and RFGB in par-
ticular. Finally, given the recent surge of sequential decision-making research,
RLR can be seen as an effective function approximator for relational Markov
decision processes (MDPs); employing this novel B-RLR model in the context
of relational reinforcement learning can be an exciting and interesting future
research direction.
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