
A Relational Hierarhial Model forDeision-Theoreti AssistaneSriraam Natarajan, Prasad Tadepalli, and Alan FernShool of EECS,Oregon State UniversityAbstrat. Building intelligent assistants has been a long-herished goalof AI and many were built and �ne-tuned to spei� appliation do-mains. In reent work, a domain-independent deision-theoreti modelof assistane was proposed, where the task is to infer the user's goaland take ations that minimize the expeted ost of the user's poliy.In this paper, we extend this work to domains where the user's poliieshave rih relational and hierarhial struture. Our results indiate thatrelational hierarhies allow suint enoding of prior knowledge for theassistant, whih in turn enables the assistant to start helping the userafter a relatively small amount of experiene.1 IntrodutionThere has been a growing interest in developing intelligent assistant systems thathelp users in a variety of tasks ranging from washing hands to travel planning[2, 6, 3℄. The emphasis in these systems has been to provide a well-engineereddomain-spei� solution to the problem of reduing the users' ognitive load intheir daily tasks. A deision-theoreti model was proposed reently to formalizethe general problem of assistantship as a partially observable Markov deisionproess (POMDP). In this framework, the assistant and the user interat in theenvironment to hange its state. The goal of the assistant is to take ations thatminimize the expeted ost of ompleting the user's task [9℄. In most situations,however, the user's task or goal1 is not diretly observable to the assistant, whihmakes the problem of quikly inferring the user's goals from observed ationsritially important. One approah to goal inferene [9℄ is to learn a probabilistimodel of the user's poliy for ahieving various goals and then to ompute aposterior distribution over goals given the urrent observation history. However,for this approah to be useful in pratie, it is important that the poliy belearned as early in the lifetime of the assistant as possible. We all this theproblem of \early assistane", whih is the main motivation behind this work.One solution to the early assistane problem, advoated in [9℄, is to assumethat (a) the user's poliy is optimal with respet to their goals and ations,the so alled \rationality assumption," and that (b) the optimal poliy an beomputed quikly by knowing the goals, the \tratability assumption." Under1 In this work, we use the words task and goal interhangeably.



these assumptions, the user's poliy for eah goal an be approximated by anoptimal poliy, whih may be quikly omputed. Unfortunately in many realworld domains, neither of these assumptions is realisti. Real world domainsare too omplex to allow tratable optimal solutions. The limited omputationalpower of the user renders the poliies to be loally optimal at best.In this paper, we propose a di�erent solution to the early assistane prob-lem, namely onstraining the user's poliies using prior domain knowledge inthe form of hierarhial and relational onstraints. Consider an example of adesktop assistant similar to CALO [4℄ that helps an aademi researher. Theresearher ould have some high level tasks like writing a proposal, whih maybe divided into several subtasks suh as preparing the over page, writing theprojet desription, preparing the budget, ompleting the biography, et. withsome ordering relationships between them. We expet that an assistant thatknows about this high level struture would better help the user. For example,if the budget annot be prepared before the over page is done, the assistantwould not onsider that possibility and an determine the user's task faster. Inaddition to the hierarhial struture, the tasks, subtasks, and states have a lassand relational struture. For example, the urgeny of a proposal depends on theloseness of the deadline. The deadline of the proposal is typially mentioned onthe web page of the ageny to whih the proposal is addressed. The ollaborationpotential of an individual on a proposal depends on their expertise in the areasrelated to the topi of the proposal. Knowing these relationships and how theyinuene eah other ould make the assistant more e�etive.The urrent paper extends the assistantship model to hierarhial and rela-tional settings, building on the work in hierarhial reinforement learning[10℄and statistial relational learning (SRL).We extend the assistantship frameworkof [9℄ by inluding parameterized task hierarhies and onditional relational in-uenes as prior knowledge of the assistant. We ompile this knowledge into anunderlying Dynami Bayesian network and use Bayesian network inferene algo-rithms to infer the distribution of user's goals given a sequene of their atomiations. We estimate the parameters for the user's poliy and inuene rela-tionships by observing the users' ations. One the user's goal distribution isinferred, we determine an approximately optimal ation by estimating the Q-values of di�erent ations using rollouts and piking the ation that has the leastexpeted ost.We evaluate our relational hierarhial assistantship model in two di�erenttoy domains and ompare it to a propositional at model, propositional hier-arhial model, and a relational at model. Through simulations, we show thatwhen the prior knowledge of the assistant mathes the true behavior of theuser, the relational hierarhial model provides superior assistane in terms ofperforming useful ations. The relational at model and the propositional hier-arhial model provide better assistane than the propositional at model, butfall short of the performane of the relational hierarhial approah.The rest of the paper is organized as follows: Setion 2 summarizes the basideision-theoreti assistane framework, whih is followed by the relational hier-



arhial extension in Setion 3. Setion 4 presents the experiments and results,Setion 5 outlines some related work and Setion 6 onludes the paper.2 Deision-Theoreti AssistaneIn this setion, we briey desribe the deision-theoreti model of assistane of[9℄ whih forms the basis of our work. In this setting, there is a user atingin the environment and an assistant that observes the user and attempts toassist him. The environment is modeled as an MDP desribed by the tuplehW;A;A0; T; C; Ii, where W is a �nite set of world states, A is a �nite set ofuser ations, A0 is a �nite set of assistant ations, and T (w; a; w0) is a transitionfuntion that represents the probability of transitioning to state w0 given thatation a 2 A [ A0 is taken in state w. C is an ation-ost funtion that mapsW � (A [A0) to real numbers, and I is an initial state distribution over W . Anepisodi setting is assumed, where the user hooses a goal and tries to ahieve it.The assistant observes the user's ations and the world states but not the goal.After every user's ation, the assistant gets a hane to take one or more ationsending with a noop ation, after whih the user gets a turn. The objetive is tominimize the sum of the osts of user and assistant ations.The user is modeled as a stohasti poliy �(ajw; g) that gives the probabilityof seleting ation a 2 A given that the user has goal g and is in state w. Theobjetive is to selet an assistant poliy �0 that minimizes the expeted ost giventhe observed history of the user. The environment is only partially observableto the assistant sine it annot observe the user's goal. It an be modeled as aPOMDP, where the user is treated as part of the environment.In [9℄, the assistant POMDP is solved approximately, by �rst estimating thegoal of the user given the history of his ations, and then seleting the bestassistive ation given the posterior goal distribution. One of the key problemsin e�etive assistantship is to learn the task quikly enough to start helping theuser as early as possible. In [9℄, this problem is solved by assuming that theuser is rational, i.e., he takes ations to minimize the expeted ost. Further, theuser MDP is assumed to be tratably solvable for eah goal. Hene, their systemsolves the user MDP for eah goal and uses it to initialize the user's poliy.Unfortunately the dual assumptions of tratability MDP and rationalitymake this approah too restritive to be useful in real-world domains that aretoo ompliated for any user to approah perfet rationality. We propose aknowledge-based approah to the e�etive assistantship problem that bypassesthe above two assumptions. We provide the assistant with partial knowledge ofthe user's poliy, in the form of a task hierarhy with relational onstraints on thesubtasks and their parameters. Given this strong prior knowledge, the assistantis able to learn the user's poliy quikly by observing his ations and updatingthe poliy parameters. We appropriately adopt the goal estimation and ationseletion steps of [9℄ to the new strutured poliy of the user and show that itperforms signi�antly better than the unstrutured approah.



3 A Relational Hierarhial Model of AssistaneIn this setion, we propose a relational hierarhial representation of the user'spoliy and show its use for goal estimation and ation seletion.3.1 Relational Hierarhial PoliiesUsers in general, solve diÆult problems by deomposing them into a set ofsmaller ones with some ordering onstraints between them. For example, pro-posal writing might involve writing the projet desription, preparing the bud-get, and then getting signatures from proper authorities. Also, the tasks havea natural lass-sublass hierarhy, e.g., submitting a paper to ICML and IJCAImight involve similar parameterized subtasks. In the real world, the tasks arehosen based on some attributes of the environment or the user. For instane,the paper the user works on next is inuened by the loseness of the deadline.It is these kinds of relationships that we want to express as prior knowledge sothat the assistant an quikly learn the relevant parameters of the poliy. Wemodel the user as a stohasti poliy �(ajw; T;O) that gives the probability ofseleting ation a 2 A given that the user has goal stak T and is in state w. Ois the history of the observed states and ations. Learning a at, propositionalrepresentation of the user poliy is not pratial in many domains. Rather, inthis work, we represent the user poliy as a relational task hierarhy and speedup the learning of the hierarhy parameters via the use of onditional inuenestatements that onstrain the spae of probabilisti dependenies.Relational Task Hierarhies. A relational task hierarhy is spei�ed overa set of variables, domain onstants, and prediate symbols. There are prediatesymbols for representing properties of world states and speifying task names.The task prediates are divided into primitive and abstrat tasks. Primitivetask prediates will be used to speify ground ations in the MDP that an bediretly exeuted by the user. Abstrat task prediates will be used to speifynon-primitive proedures (that involve alling subtasks) for ahieving high-levelgoals. Below we will use the term task stak to mean a sequene of ground tasknames (i.e. task prediates applied to onstants).A relational task hierarhy will be omposed of relational task shemas whihwe now de�ne.De�nition 1 (Relational Task Shema). A relational task shema is either:1) A primitive task prediate applied to the appropriate number of variables, or2) A tuple hN;S;R;G; P i, where the task name N is an abstrat task prediateapplied to a set of variables V , S is a set of hild relational task shemas (i.e. thesubtasks), R is a set of logial rules over state, task, and bakground prediatesthat are used to derive a andidate set of ground hild tasks in a given situation,G is a set of rules that de�ne the goal onditions for the task, and P (sjT;w;O)is a probability distribution that gives the probability of a ground hild task sonditioned on a task stak T , a world state w, and an observation history O.Eah way of instantiating the variables of a task shema with domain onstantsyields a ground task. The semantis of a relational task shema speify what



it means for the user to \exeute to ompletion" a partiular ground task asfollows. As the base ase, a primitive ground task is exeuted-to-ompletion bysimply exeuting the orresponding primitive MDP ation until it terminates,resulting in an updated world state.An abstrat ground task, an intuitively be viewed as speifying a stohas-ti poliy over its hild subtasks whih is exeuted until its goal ondition issatis�ed. More preisely, an abstrat ground task t is exeuted-to-ompletion byrepeatedly seleting ground hild tasks that are exeuted-to-ompletion until thegoal ondition G is satis�ed. At eah step given the urrent state w, observationhistory O, task stak T , and set of variable bindings B (that inlude the bindingsfor t) a hild task is seleted as follows: 1) Subjet to the variable bindings, therules R are used to derive a set of andidate ground hild tasks. 2) From thisset we draw a ground task s aording to P , properly normalized to only takeinto aount the set of available subtasks. 3) The drawn ground task is thenexeuted-to-ompletion in the ontext of variables bindings B0 that inlude thebindings in B along with those in s and a task stak orresponding to pushingt onto T .Based on the above desription, the set of rules R an be viewed as speifyinghard onstraints on the legal subtasks with P seleting among those tasks thatsatisfy the onstraints. The hard onstraints imposed by R an be used restritthe argument of the hild task to be of a ertain type or may plae mutualonstraints on variables of the hild tasks. For example, we ould speify rulesthat say that the doument to be attahed in an email should belong to theprojet that the user is working on. Also, the rules an speify the orderingonstraint between the hild tasks. For instane, it would be possible to say thatto submit a paper the task of writing the paper must be ompleted �rst.We an now de�ne a relational task hierarhy.De�nition 2 (Relational Task Hierarhy). A relational task hierarhy isrooted ayli graph whose nodes are relational task shemas that satisfy thefollowing onstraints: 1) The root is a speial subtask alled ROOT. 2) Theleaves of the graph are primitive task shemas. 3) There is an ar from node n1to node n2 if and only if the task shema of n2 is a hild of task shema n1.We will use relational task hierarhies to speify the poliy of a user. Spei�ally,the user's ations are assumed to be generated by exeuting the ROOT task ofthe hierarhy with an initially empty goal stak and set of variable bindings.An example of a Relational Task Hierarhy is presented in the Figure 1 fora game involving resoure gathering and tatial battles. For eah task shemawe depit some of the variable binding onstraints enfored by the R as a logialexpression. For larity we do not depit the ordering onstraints imposed by R.From the ROOT task the user has two distint hoies to either gathering aresoure, Gather(R) or attaking an enemy, Attak(E). Eah of these tasks anbe ahieved by exeuting either a primitive ation (represented with ovals in the�gure) or another subtask. For example, to gather a resoure, the user needsto ollet the resoure (denoted by Collet(R)) and deposit the resoure at thestorage (denoted by Deposit(R,S), whih indiates that R is to be deposited in S).



Resoures are stored in the storages of the same type (for example, gold in a bank,food in a granary et.), whih is expressed as the onstraint R:type = S:type inthe �gure. One the user hooses to gather a resoure (say gold1), the value ofR in all the nodes that are lower than the node Gather(R) is set to the valuegold1. R is freed after Gather is ompleted.
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Fig. 1. Example of a task hierarhy of the user. The inner nodes indiate subtaskswhile the leaves are the primitive ations. The tasks are parameterized and the tasksat the higher level will all the tasks at the lower levelConditional Inuenes: Often it is relatively easy to hand-ode the rulesets R that enode hard-onstraints on hild tasks. It is more diÆult to preiselyspeify the probability distributions for eah task shema. In this work, we takethe approah of hand-oding a set of onditional inuene statements that areused to onstrain and hene speedup the learning of these probability distribu-tions. The onditional inuenes desribe the objets and their attributes thatinuene a subtask hoie based on some ondition, i.e., these statements serveto apture a distribution over the subtasks given some attributes of the envi-ronment (P (subtask j worldstate)). For example, sine there ould be multiplestorage loations for a resoure, the hoie of a storage may be inuened by itsdistane to the resoure. While this knowledge an be easily expressed in mostSRL formalisms suh as Probabilisti Relational Language [18℄ and BayesianLogi Programs [15℄, we give an example in First-Order Conditional InueneLanguage (FOCIL) [19℄.If {Goal(Gather(R)),Completed(Collet(R)),Equal(Type(R),Type(S))} thenDistane(Lo(R), Lo(S))) Qinf subgoal(Deposit(R,S))A FOCIL statement of the form IffZ(�)g then Y1(�); : : : ; Yk(�) Qinf X(�)means that Y1(�); : : : ; Yk(�) inuene X(�) when Z(�) is true, where � is a setof logial variables. The above statement aptures the knowledge that if R isa resoure that has been olleted, and S is a storage where R an be stored,



the hoie of the value of S is inuened by the distane between R and S. Theprobability of hoosing a subtask in a given state is determined solely by theattribute values of the objets mentioned in the onditional inuene statement,whih puts a strong onstraint on the user's poliy and makes it easier to learn.3.2 Goal EstimationIn this setion, we desribe our goal estimation method, given the kind of priorknowledge desribed in the previous setion, and the observations, whih onsistof the user's primitive ations. Note that the probability of the user's ationhoie depends in general on not only the pending subgoals, but also on someof the ompleted subgoals inluding their variable bindings. Hene, in general,the assistant POMDP must maintain a belief state distribution over the pendingand ompleted subgoals. whih we all the \goal struture."We now de�ne the assistant POMDP. The state spae is W �T where Wis the set of world states and T is the user's goal struture. Correspondingly, thetransition probabilities are funtions between (w; t) and (w0; t). Similarly,the ost is a funtion of hstate, ationi pairs. The observation spae nowinludes the user's ations and their parameters (for example, the resoure thatis olleted, the enemy type that is killed et).In this work, we make a simplifying assumption that there is no unertaintyabout the ompleted subtasks. This assumption is justi�ed in our domains, wherethe ompletion of eah subtask is aompanied with an observation that identi�esthe subtask that has just ompleted. This would enable the inferene proess tobe muh simpler as we do not need to maintain a distribution over the (possibly)ompleted subtasks. For estimating the user's goal stak, we use a DBN similarto the one used in [16℄ and present it in Figure 2. T ij refers to the task at time-step j and level i in the DAG. Oi refers to the ompleted subtask at level i. F ijis an indiator variable that represents whether T ij has been ompleted and atsas a multiplexer node. If the lower level task is ompleted and the urrent task isnot ompleted, the transition funtion for the urrent task would reet hoosingan ation for the urrent subtask. If the lower level task is not ompleted, theurrent task stays at its urrent state. If the urrent task is ompleted, the valueis hosen using a prior distribution over the urrent task given the higher leveltasks.In the experiments reported in the next setion, we ompiled the FOCILstatements into a DBN struture by hand. The number of levels of the tasks inthe DBN orresponds to the depth of the direted graph in the relational taskhierarhy. The values of the di�erent task level nodes will be the instantiatedtasks in the hierarhy. For instane, the variable T 1j takes values orrespondingto all possible instantiations of the seond-level tasks. One the set of possiblevalues for eah urrent task variable in the task is determined, the onstraintsare used to onstrut the CPT. For example, the onstraint R:Type = S:Typein the Figure 1 implies that a resoure of one type an be stored in the storageof the same type. Assume that the user is gathering gold. Then in the CPTorresponding to P (T 2j = Store(S; gold) j T 1j = Gather(gold), all the entriesexept the ones that orrespond to a bank are set to 0. The rules R of the task



shema determine the non-zero entries of the CPTs, while the FOCIL statementsonstrain the distributions further. Note that, in general, the subtasks ompletedat a partiular level inuene the distribution over the urrent subtasks at thesame level through the hard onstraints, whih inlude ordering relationships. Inour experiments, however, we have hosen to not expliitly store the ompletedsubtasks at any stage sine the ordering of subtasks has a speial struture.The subtasks are partitioned into small unordered groups, where the groups aretotally ordered. This allows us to maintain a small memory of only the ompletedsubtasks in the urrent group.
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Fig. 2. Dynami Bayesian network that is used to infer the user's goal.To illustrate the onstrution of the DBN given the hierarhy and inuenestatements better, let us onsider the example presented in Figure 1. Assume thatthe user hooses to gather g1 (i.e., gold from loation 1). One the episode begins,the variables in the DBN are instantiated to the orresponding values. The taskat the highest level T 1j , would take values from the set h Gather(g1), Gather(g2),Gather(w1),Gather(w2), Destroy(e1),Destroy(e2) i, assuming that there are 2gold and wood loations and 2 enemies. Similarly, the tasks at level n of the DBNwould assume values orresponding to the instantiation of the nodes at the nthlevel of the hierarhy. The onditional inuene statements are used to obtaina prior distribution over the goal stak only after every subtask is �nished orat the beginning of the episode to minimize unertainty and retain tratability.One the prior is obtained, the posterior over the goal stak is updated afterevery user ation. For example, one the user �nishes the subtask of ollet(g1),the relational struture would restrit the set of subgoals to depositing the re-soure and the onditional inuene statements would provide a prior over thestorage loations. One the highest level task of Gather is ompleted, the DBNparameters are updated using the omplete set of observations. Our hypothesisthat we verify empirially is that, the relational struture and the onditionalinuene statements together provide a strong prior over the task stak whihenables fast learning.Given this DBN, we need to infer the value of P (T 1:dj j T 1:dj�1; F 1:dj�1; aj ; O1:d),where d is the depth of the DAG i.e, infer the posterior distribution over the



user's goal stak given the observations (the user ations in our ase) and theompleted goal stak. As we have mentioned, we are not onsidering the om-pleted subgoals due to the fat that most of our onstraints are total order andthere is no neessity of maintaining them. Sine we always estimate the urrentgoal stak given the urrent ation and state, we an approximate the DBNinferene as a BN inferene for the urrent time-step. The other issue is thelearning of parameters of the DBN. At the end of every episode, the assistantupdates the parameters of the DBN based on the observations in that episodeusing maximum likelihood estimates with Laplae orretion. Sine the modelis inherently relational, we are able to exploit parameter tying between similarobjets and hene aelerate the learning of parameters. The parameter learningin the ase of relational models is signi�antly faster as demonstrated by ourexperiments.It should be noted that Fern et.al solved the user MDP and used the valuesto initialize the priors for the user's ation models. Though it seems justi�able,it is not always possible to solve the user MDP. We show in our experimentsthat even if we begin with an uniform prior for the ation models, the relationsand the hierarhial struture would enable the assistant to be useful even inthe early episodes.3.3 Ation SeletionGiven the assistant POMDP M and the distribution over the user's goal stakP (T 1:d j Oj), where Oj are the observations, we an ompute the value of assis-tive ations. Following the approah of [9℄, we approximate the assistant POMDPwith a series of MDPsM(t1:d), for eah possible goal stak t1:d. Thus, the heuris-ti value of an ation a in a world state w given the observations Oj at time-stepj would now orrespond to,H(w; a;Oj) =Xt1:d Qt1:d(w; a) � P (t1:djOj)where Qt1:d(w; a) is the value of performing the ation a in state w in theMDP M(t1:d) and P (t1:djOj) is the posterior probability of the goal stak giventhe observations. Instead of sampling over the goals, we sample over the possiblegoal stak values. The relations between the di�erent goals would restrit thenumber of goal-subgoal ombinations. If the hierarhy is designed so that thesubgoals are not shared between higher level goals, we an greatly redue thenumber of possible ombinations and hene making the sampling proess pra-tially feasible. We verify this empirially in our experiments. To ompute thevalue of Qt1:d(w; a), we use the poliy rollout tehnique [5℄ where the assumptionis that the assistant would perform only one ation and assumes that the agenttakes over from there and estimates the value by rolling out the user poliy.Sine the assistant has aess to the hierarhy, it hooses the ations subjetedto the onstraints spei�ed by the hierarhy.To summarize, the high level algorithm is presented below. The parametersare updated at the end of the episode using MLE estimates. When an episodeis ompleted, the set of ompleted tasks and the ation trajetories are used toupdate the parameters of the nodes at di�erent levels.



{ Iitialize DBNs as in Figure 2 inorporating all hard onstraints into the CPTs{ For eah episode� For eah time step� Observe any task ompleted� Update the posterior distribution of goal stak based on the obser-vation, the hard onstraints, and FOCI statements� Observe the next ation� Update the posterior distribution over the tasks in the task stak� Compute the best assistive ation� Update the DBN parameters4 Experiments and ResultsIn this setion, we briey explain the results of simulation of a user in two do-mains2: a gridworld doorman domain where the assistant has to open the rightdoors to the user's destination and a kithen domain where the assistant helpsthe user in preparing food. We simulate a user in these domains and omparedi�erent versions of the deision theoreti model and present the results of theomparison. The di�erent models that we ompare are: the relational hierarhi-al model that we presented, a hierarhial model where the goal struture ishierarhial, a relational model where there are objets and relations but thereis a at goal struture and a at model whih is a very naive model with a atgoal struture and no notion of objets are relationships. Our hypothesis is thatthe relational models would bene�t from parameter tying and hene an learnthe parameters faster and would o�er better assistane than their propositionalounterparts at earlier episodes. Similarly, the hierarhial model would makeit possible to deompose the goal struture thus making it possible to learnfaster. We demonstrate through experiments that the ombination of relationaland hierarhial models would enable the assistant to be more e�etive than theassistant that uses either of these models.4.1 Doorman DomainIn this domain, the user is in a gridworld where eah grid ell has 4 doors that theuser has to open to navigate to the adjaent ell (see Figure 3.a). The hierarhypresented in Figure 1.a was used as the user's goal struture. The goals of theuser are to Gather a resoure or to Attak an enemy. To gather a resoure, theuser has to ollet the resoure and deposit it at the orresponding loation.Similarly, to destroy an enemy, the user has to kill the dragon and destroy theastle. There are di�erent kinds of resoures, namely food and gold. Eah resourean be stored only in a storage of its own type (i.e, food is stored in granaryand gold is stored in bank). There are 2 loations for eah of the resoures andits storage. Similarly there are 2 kinds of enemy red and blue. The user has tokill the dragon of a partiular kind and destroy the astle of the same kind. Theepisode ends when the user ahieves the highest level goal. The ations that the2 These are modi�ation to the domains presented by Fern et.al[9℄



user an perform are to move in 4 diretions, open the 4 doors, pik up, put downand attak. The assistant an only open the doors or perform a noop. The doorloses after one time-step so that at any time only one door is open. The goalof the assistant is to minimize the number of doors that the user needs to open.The user and assistant take ations alternately in this domain. We employed
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RelationalModelFig. 3. (a)Doorman Domain. Eah ell has 4 doors that the user has to open to navigateto the adjaent ell. The goal of the assistant is to minimize the number of doors thatthe user has to open. (b)Learning urves for the 4 algorithms in the doorman domain.The y-axis presents the average savings for the user due to the assistant.four versions of the assistant that models the user's goal struture: one thatmodels the struture as a relational hierarhial model, seond whih assumes ahierarhial goal struture but no relational struture (i.e., the model does notknow that the 2 gold loations are of the same type et and thus annot exploitparameter tying), third whih assumes a relational struture of user's goal butassumes at goals and hene does not know the relationship between ollet anddeposit of subtasks, and the fourth that assumes a at goal struture. A stateis a tuple hs; di, where s stands for the the agent's ell and d is the door that isopen. For the two at ases, there is a neessity inlude variables suh as arrythat an take 5 possible values and kill that take 3 values to apture the stateof the user having olleted a resoure or killed the dragon before reahing theeventual destination. Hene the state spae of the 2 at models is 15 times morethan that of the hierarhial one.To ompare the 4 algorithms, we solved the underlying hierarhial MDPand then used the Q-values to simulate the user. For eah episode, the higherlevel goals are hosen at random and the user attempts to ahieve the goal.We alulate usefulness of the assistant as the ratio of the orret doors thatit opens to the total number of doors that are needed to be opened for theuser to reah his goal whih is a worst-ase measure of the ost savings of theuser. We average the usefulness every 10 episodes. The user's poliy is hiddenfrom the assistant in all the algorithms and the assistant learns the user poliyas and when the user performs his ations. The relational model aptures therelationship between the resoures and storage and between the dragon's type



and the astle's type. The hierarhial model aptures the relationship betweenthe di�erent goals and subgoals, for instane, that the user has to ollet someresoure in order to deposit it, et. The hierarhial relational model has aessto both the kinds of knowledge and also to the knowledge that the distane tothe storage loation inuenes the hoie of the storage loation.The results are presented in Figure 3.b. The graph presents the average use-fulness of the assistant after every 10 episodes. As an be seen from the �gure,the relational hierarhial assistant is more useful than the other models. Inpartiular, it an exploit the prior knowledge e�etively as demonstrated by therapid inrease in the usefulness in earlier episodes. The hierarhial and rela-tional models also exploit the prior knowledge and hene have a quiker learningrate than the at model (as an be seen from the �rst few episodes of the �g-ure). The hierarhial relational model outperforms the hierarhial model asit an share parameters and hene has to learn a smaller number of parame-ters. It outperforms the relational model as it an exploit the knowledge of theuser's goal struture e�etively and an learn quikly at the early stages of anepisode.required for omputing the best ation of the assistant for all the fouralgorithms. This learly demonstrates that the hierarhial relational model anbe more e�etive without inreasing the omputational ost.4.2 Kithen DomainThe other experimental domain is a kithen domain where the user has to ooksome dishes. In this domain, the user has 2 kinds of higher-level goals: one inwhih he ould prepare a reipe whih ontains a main dish and a side dish andthe seond in whih, he ould use some instant food to prepare a main dish anda side dish. There are 2 kinds of main dishes and 2 kinds of side dishes that heould prepare from the reipe. Similarly, there are 2 kinds of main dishes and2 kinds of side dishes that he ould prepare from instant food. The hierarhy ispresented in Figure 4.a. The symbol 2 is used to apture the information thatthe objet is part of the plan. For instane, the expression I 2 M:Ing means thatthe parameter to be passed is the ingredient that is used to ook the main dish.The plans are partially ordered. There are 2 shelves with 3 ingredients eah. Theshelves have doors that must be opened before fething ingredients and only onedoor an be open at a time.The state onsists of the ontents of the bowl, the ingredient on the table,the mixing state and temperature state of the ingredient (if it is in the bowl)and the door that is open. The user's ations are: open the doors, feth theingredients, pour them into the bowl, mix, heat and bake the ontents of thebowl, or replae an ingredient bak to the shelf. The assistant an perform alluser ations exept for pouring the ingredients or replaing an ingredient bak tothe shelf. The ost of all non-pour ations is -1. Unlike in the doorman domain,here it is not neessary for the assistant to wait at every alternative time step.The assistant ontinues to at until the noop beomes the best ation aordingto the heuristi. The episode begins with all the ingredients in the shelf and thedoors losed. The episode ends when the user ahieves the goal of preparing amain dish and a side dish either with the reipe or using instant food.



The savings in this domain is the ratio of the orret non-pour ations that theassistant has performed to the number of ations required for the goal. Similarto the other domain, we ompared 4 di�erent types of models of assistane.The �rst is the hierarhial relational model that has the knowledge of the goal-subgoal hierarhy and also has the relationship between the subgoals themselves.It knows that the type of the main dish inuenes the hoie of the side dish.The seond model is the hierarhial model, that has the notions of the goalsand subgoals but no knowledge of the relationship between the main dishes andthe side dishes and thus has more number of parameters to learn. The relationalmodel assumes that there are two kinds of food namely the one prepared fromreipe and one from instant food and does not possess any knowledge about thehierarhial goal struture. The at model onsiders the preparation of eah ofthe 8 dishes as a separate goal and assists the user. Both the at model and therelational model assume that the user is always going to prepare the dishes inpairs but do not have the notion of main dish and side dishes or the orderingonstraints between them.
PrepareRecipe(R) InstantFood(I)

MainDish(M) SideDish(S) SideDish(SI)MainDish(MI)

FetchIng(I)

Fetch(I) Pour(I)

I    M.Ing I    S.Ing

I    MI.Ing

I    SI.Ing

Temp(C)

Heat Bake

C    M.NeededTemp
C    S.NeededTemp

C    MI.NeededTemp

C    SI.NeededTemp

OpenDoor(D)

D = I.Loc.Door

ROOT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of epsides x 10

 S
a
v
in

g
s

Flat

Relational

Hierarchical
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5 Related WorkMost of the deision-theoreti assistants have been formulated as POMDPs thatare approximately solved o�ine. For instane, the COACH system helped peoplesu�ering from Dementia by giving them appropriate prompts as needed in theirdaily ativities [2℄. In this system, there is a single �xed goal of washing handsfor the user. In Eletri Elves, the assistant is used to reshedule a meetingshould it appear that the user is likely to miss it [6℄. These systems do not havea hierarhial goal struture for the user while in our system, the assistant infersthe user's goal ombinations and renders assistane.Several plan reognition algorithms use a hierarhial struture for the user'splan. These systems would typially use a hierarhial HMM [17℄ or an abstratHMM [1℄ to trak the user's plan. They unroll the HMMs to a DBN and performinferene to infer the user's plan. We follow a similar approah, but the keydi�erene is that in our system, the user's goals are relational. Also, we allowfor riher models and do not restrit the user's goal struture to be modeled bya HMM. We use the qualitative inuene statements to model the prior overthe user's goal stak. We observe that this ould be onsidered as a method toinorporate riher user models inside the plan reognition systems. There hasbeen substantial researh in the area of user modeling. Systems that have beenused for assistane in spreadsheets [7℄ and text editing [8℄ have used handodedDBNs to infer about the user. Our system provides a natural way to inorporateuser models into a deision-theoreti assistant framework.In reent years, there have been several �rst-order probabilisti languages de-veloped suh as PRMs [14℄, BLPs [15℄, RBNs [12℄, MLNs [13℄ and many others.One of the main features of these languages is that they allow the domain expertto speify the prior knowledge in a suint manner. These systems exploit theonept of parameter tying through the use of objets and relations. In this pa-per, we showed that these systems an be exploited in deision-theoreti setting.We ombined the hierarhial models typially used in reinforement learningwith the kinds of inuene knowledge typially enoded in relational models toprovide a strong bias on the user poliies and aelerate learning.6 Conlusions and Future WorkIn this work we proposed the inorporation of parameterized task hierarhies toapture the goal struture of a user in a deision-theoreti model of assistane.We used the relational models to speify the prior knowledge as relational hier-arhies and as a means to provide informative priors. We evaluated our modelagainst the non-hierarhial and non-relational versions of the model and es-tablished that ombining both the hierarhies and relational models makes theassistant more useful. The inorporation of hierarhies would enable the assis-tant to address several other problems in future. The most important one isthe onept of parallel ations. Our urrent model assumes that the user andthe assistant have interleaved ations and annot at in parallel. Allowing par-allel ations an be leveraged if the goal struture is hierarhial as the useran ahieve a subgoal while the assistant an try to ahieve another one. Yetanother problem that ould be handled due to the inorporation of hierarhies is
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