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We consider the problem of active feature elicitation in which, given some

examples with all the features (say, the full Electronic Health Record), and

many examples with some of the features (say, demographics), the goal is

to identify the set of examples on which more information (say, lab tests)

need to be collected. The observation is that some set of features may be

more expensive, personal or cumbersome to collect. We propose a classifier-

independent, similarity metric-independent, general active learning approach

which identifies examples that are dissimilar to the ones with the full set of

data and acquire the complete set of features for these examples. Motivated by

four real clinical tasks, our extensive evaluation demonstrates the e�ectiveness

of this approach. To demonstrate the generalization capabilities of the proposed

approach, we consider di�erent divergence metrics and classifiers and present

consistent results across the domains.

KEYWORDS

active learning, feature elicitation, classification, healthcare, sample-e�ciency

1. Introduction

Acquiring meaningful data is important for learning robust models, and is especially

relevant in data scarce domains such as medicine. While there are a plethora of data

regarding several diseases, in some cases, it is crucial to obtain information that is particularly

relevant to the learning task. The problem of choosing an example to obtain its class label has

been addressed as active learning (Settles, 2012). There have been several extensions of active

learning that included presenting a set of features (Raghavan et al., 2006; Druck et al., 2009),

or getting labels over clusters (Hofmann and Buhmann, 1998), or preferences (Odom and

Natarajan, 2016) or in sequential decision making (Lopes et al., 2009), to name a few. Most

of these directions considered getting label information for a set of unlabeled examples.

Our problem is different and is motivated by a set of medical tasks with a common

requirement—that of recruiting patients for a clinical study. Consider the following scenario

of collecting data (cognitive score and fMRI, both structural and functional) for an

Alzheimer’s study. Given a potentially large cohort size, the first step could be to simply

collect the demographic information on everyone. Now, given a small amount of complete

data from a related study, say the Alzheimer’s Disease Neuro-Initiative (ADNI), our goal

is to recruit subjects who would provide the most information for learning a robust,

generalized model. This scenario is highlighted in Figure 1. The top part shows the part

of the data that is fully observed (potentially from a related study). The bottom left

quadrant shows the observed features of the potential cohorts and the right quadrant

is the data that needs to be collected for the most useful potential recruits (we refer

to these features as elicitable features from hereon). Given, the labels of the potential
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FIGURE 1

The active feature elicitation setting. The top part is the fully

observed data and the bottom right (gray shaded area) is the

elicitable feature set. Figure appears in Natarajan et al. (2018).

recruits, the goal is to identify the most informative cohorts that

would aid the study. The definition of most informative is quite

general in our work and can be adapted as necessary.

Inspired by the success of active learning methods, we define

the problem of active feature elicitation (AFE) where the goal is

to select the best set of examples on whom the elicitable features

can be queried on to best improve the classifier performance. At

a high level, our algorithm (also called AFE) at each iteration,

identifies examples that are most different from the current set of

fully observed examples. These are then queried for the elicitable

features, their feature-values are obtained and added to the training

set. Then, the models are updated and the process is repeated until

convergence. This is a general-purpose framework. Any distance

metric that works well with the data and the model can be

employed. So can a classifier that is capable of handling the specific

intricacies of the data. Finally, the convergence criteria can be

decided based on the domain. We provide a list of such distances

and criteria after introducing the algorithm.

1.1. Motivating medical tasks

We motivate active feature elicitation with four medical tasks

that we address in this work:

1. Parkinson’s: The Parkinson’s Progression Markers Initiative

(PPMI) is an observational study with the aim of identifying

biomarkers that impact Parkinson’s progression (Marek and

Jennings, 2011). The data can be divided broadly into four

categories: imaging data, clinical data, bio-specimens and

demographics. Among these data types, while other modalities

are either costly or cumbersome to obtain, the total Montreal

Cognitive Assessment Score (MoCA) is a standard measure that

can be used to select subjects for whom information from other

modalities can improve classifier performance significantly.

Given that the other metrics are expensive/cumbersome to

collect, one could potentially only employ the demographic

information and query the most informative subjects to collect

information of the other modalities.

2. Alzheimer’s: The Alzheimer’s Disease NeuroIntiative (ADNI1)

aims to test whether serial MRI, PET, biological markers, and

clinical and neuropsychological assessments can measure the

progression of mild cognitive impairment and early Alzheimer’s

disease. Given a small number of subjects with all the

measurements, demographic data can be used to select subjects

for whom obtaining more information such as the cognitive

MMScore and imaging data could maximize performance

in predicting Alzheimer’s progression. Specifically, one could

determine the set of subjects on whom the expensive imaging

tests could be performed based on the demographic and

questionnaire information.

3. Rare diseases: A recent work (MacLeod et al., 2016) focused

on predicting rare diseases from a survey questionnaire

that consisted of questions in the following categories:

demographics, technology use, disease information and

healthcare provider information. The set of diseases in the

study includes Ehlers Danlos Syndrome (23%), Wilson’s Disease

(21.9%), Kallmann’s Syndrome (9.9%), etc. Demographics can

be used to identify the future participants of the survey as this

can avoid more personal questions such as technology use and

the provider details along with the disease information itself.

4. Post-partum depression: This work collects demographic

information along with several sensitive questions including

relationship troubles, social support, economic status, infant

behavior and the CDC questions to identify PPD in subjects

outside the clinic (Natarajan et al., 2017). As with the earlier

cases, demographics can be used to recruit the subjects on whom

more sensitive information can be collected.

These varied medical tasks demonstrate the need for employing

an active feature elicitation approach that allows for collecting

relevant information in an effective manner. While the presented

motivating tasks are medical, one could imagine the use of such an

approach in any domain where some features are either expensive

or cumbersome to obtain. While our work has been motivated

as improving a specific performance metric such as accuracy, the

framework is general enough to incorporate any metric including

more recently addressed fairness metrics (Dwork et al., 2012;

Kleinberg et al., 2017; Gillen et al., 2018).

Contributions: We make a few key contributions. First, we

identify and formally define the problem of actively acquiring

features from a selected set of examples. Second, we show the

potential of this approach in four real medical prediction tasks:

Alzheimer’s from fMRI and cognitive score, Parkinson’s from

potential risk factors, rare diseases based on a survey questionnaire

and predicting post-partum depression (PPD) in a non-clinical

setting. Third, we present empirical evidence based on different

divergence measures and different learning algorithms to validate

the generality of the proposed approach. Finally, we empirically

demonstrate that AFE is particularly effective in recall while not

sacrificing the performance in these four real tasks.2

1 www.loni.ucla.edu/ADNI
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The rest of the paper is organized as follows: first, we introduce

the necessary background and discuss the related work. Then,

we introduce our framework of AFE and present the different

divergence measures that can be expanded. We next present

the experimental domains and perform a comprehensive analysis

across different divergence measures and base classifiers. We

then conclude the paper by presenting interesting directions for

future research.

2. Background and related work

Our work is closely related to active learning where the

most informative examples are chosen based on a scoring metric

to be labeled when learning with semi-supervised data. Active

learning (Settles, 2012) relies on the fact that if an algorithm

can only solicit labels of a limited number of examples, then it

should choose them judiciously since not all examples provide the

same amount of information. Active learning has a long history

of being successfully employed with a variety of classifiers such

as logistic regression (Lewis and Catlett, 1994; Lewis and Gale,

1994), support vector machines (Tong and Koller, 2001b), Bayesian

network learning (Tong and Koller, 2000, 2001a) and in sequential

decisionmaking tasks such as imitation learning (Judah et al., 2014)

and inverse reinforcement learning (Odom and Natarajan, 2016).

Active learning has also been used with elicitable features.

Zheng and Padmanabhan (2002), for instance, considered a setting

where an imputation method was used to fill the incomplete

feature subset and used scoring methods to acquire the most

informative example for labeling. While their method explicitly

estimated the missing feature subset using an imputation model

for each instance to compute the score, our algorithm is not

dependent on any imputation model and does not use any

estimate of the feature subset to be acquired. Melville et al. (2004)

used uncertainty sampling to acquire the maximally informative

unlabeled examples from the partially observed set of features

during training time. Their model to compute uncertainty also

depends on some predefined imputation strategy. While Zheng et

al. uses the examples with the complete feature set to build their

model and Melville et al. uses all of the available training examples

to build their model, our method uses two different models to

capture uncertainty. There is also a different body of work where

instances are chosen based on individual feature utilities. Melville

et al. (2005) computed expected feature utility for every feature per

example based on how acquiring each feature will have an impact

on the model’s performance per unit cost while (Lizotte et al.,

2003) pose the problem as Sequential decision making task and

uses expected feature utility to learn the desired policy while fixing

their budget a priori. While our work is significantly different in

motivation and technicality to the above-mentioned literature, all

of these methods are somewhat similar to our work in the problem

setting of identifying the best example or best feature per example

to acquire during training time.

2 An earlier version of the paper had appeared in IJCAI 2018 (Natarajan

et al., 2018). We have significantly expanded on the paper by including

additional theoretical insights and experiments using di�erent divergence

measures and classifiers.

Our work is inspired by the work of Kanani andMelville (2008)

on active feature acquisition that addressed a similar problemwhere

a few examples with the full set of features are present while others

are incomplete examples. Their work also scored these examples

based on uncertainty sampling and then updated the model at

prediction time. There are a few key differences between this work

and ours. First, our model updates occur during training and not

during the test time. Second, we return a single model on the

best set of training data while their approach had two different

models for testing. Our approach explicitly grows the set of training

examples for a single model iteratively. They employed uncertainty

sampling on the observed feature sets (which is a baseline in our

approach), while we explicitly compute the distance between the

two distributions induced by our model. Finally, while their test

data can have partial feature sets, our method evaluates test time

performance on instances with the complete feature set available.

Kanani et al. (2007) also looked at the test time acquisition problem

for related entities to do entity resolution.

This work was later extended by Thahir et al. (2012) for protein-

protein interaction prediction where an extra term was added to

the utility function that explicitly computed the value of adding

an example to the classifier set. While it is possible to compute the

value of adding an example to the training set in our work, we will

pursue this as a future research direction. The AFA framework was

then later generalized and rigorously analyzed by Saar-Tsechansky

et al. (2009) where even class labels can be considered to be

missing and acquired. We assume that these labels are observed

and that full sets of features need to be acquired. A key difference

to this general direction is that both the observed set of examples

and observed set of features are significantly smaller in our work

compared to the general AFA setting which is clearly demonstrated

in our experiments.

Bilgic and Getoor (2007) took a different approach to a similar

task where they assumed different costs for misclassification and

information acquisition. They proposed a probabilistic framework

that explicitly modeled this dependency and developed an

algorithm to identify the set of features that can be optimally

identified. Using such a strategy for discovering sets of features that

one could acquire for different sets of patients is an interesting

direction. Feature elicitation is inspired by the preference

framework of concept learning by Boutilier et al. (2009), where

minimax regret is used for computing the utility of subjective

features. The violated constraints are repeatedly added to the

computation and can potentially make the problem harder to solve.

Huang et al. (2018) solved a different variant of the problem where

different features are missing for different examples at training

time and they used matrix completion with active learning scoring

strategies to acquire the most informative features for various

examples. While their problem setting assumes different parts of

the feature vector to bemissing, our problem setting assumes a fixed

part of the feature vector to be missing during training. A variant of

this problem was posed by Krause and Guestrin (2009) as subset-

selection problem solved by optimizing the feature-level value of

information from graphical models.

There is another line of work that uses sequential decision

making to learn an optimal policy to decide which features and

in what order needs to be acquired. As discussed earlier, Lizotte

et al. (2003) pose the problem of acquiring features as a sequential
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decision-making problem in a budgeted setting and learn the

desired policy. A few directions of work (Dulac-Arnold et al.,

2011; Shim et al., 2018) pose the problem of acquiring the best

feature subset for every example at prediction time as a joint

optimization problem where the learning agent optimizes the

acquisition cost for every feature using a reward function which

is the expected classifier performance. The work by Dulac-Arnold

et al. (2011) was extended by Janisch et al. (2019) who replaced

the linear components with neural networks and used Deep Q-

networks to estimate the utility of each feature. He et al. (2012)

used imitation learning to solve the problem of feature selection

by demonstrating immediate best actions (may not be the best

long term actions) for the learner, thus providing the learner

with trajectories demonstrating sub-optimal policy. While all of

the above-mentioned work deals with the problem of acquiring

the most informative feature subsets for different examples at

prediction time, our method focuses on deciding the most

informative example for which a fixed predefined feature subset

needs to be acquired at training time. Similar to these methods, our

method can also accommodate cost-sensitive learning by including

a cost-sensitive classifier (Chai et al., 2004; Ling et al., 2004) to

calculate the divergence measure.

A slightly different but related direction is prediction time

feature elicitation. Nan et al. (2015, 2016) incorporated a budget

constraint along with the loss function of random forests to trade

off between acquisition cost and accuracy. Other tree based models

including gradient boosted trees and directed acyclic graphs was

used by Xu et al. (2012), Xu et al. (2013), and Wang et al. (2015)

to optimize test-time acquisition cost. A subsequent work (Nan

and Saligrama, 2017) adaptively used a low prediction cost model

wherever possible and switched to a high cost model in difficult

regions of input space. Gong et al. (2019) used latent gaussian

models to address the problem of acquiring features at training

time and also applied it to a real world health care data. A recent

work by Das et al. (2021) identified important feature subsets for

different examples during training by optimizing an information-

theoretic feature-selector function thus helping in cost effective

feature elicitation during testing. In all of the aforementioned work,

a subset of features is elicited at prediction/training time. In our

problem setting, examples are selected actively to build a training

model with most informative training data and the entire feature

set is elicited for the chosen examples.

To summarize, our work is inspired by the contributions from

several of these related works but differs in the motivation of

collecting more features by identifying the right set of examples

during training time to improve the model. As mentioned, we differ

from active feature acquisition in both motivation and execution—

we collect a large number of features from a small set of examples

during training and use distances to calculate the most diverse set

of examples.3 The other important difference is in the number of

observed features, which is assumed to be much smaller in our

work. And our solution that explicitly computes the relationship

between the observed and unobserved data is independent of

the choices of classifiers and distance functions. One of the key

assumptions that we make is that all elicitable features are collected

3 Genome sequencing would best exemplify such a scenario.

for the selected examples, and identifying the relevant set of features

along the lines of Bilgic and Getoor is an exciting direction for

future work.

3. Active feature elicitation

Let us denote the label of an example i as Y i, the set of fully

observed features (i.e., the features that are observed for the entire

data set) as Xo, the set of elicitable features as Xu, the set of fully

observed examples set as Eo = 〈〈X1
o,X

1
u,Y

1〉...〈Xk
o,X

k
u,Y

k〉〉 and
the set of partially observed examples as Eu = 〈〈X1

o,Y
1〉...〈Xℓ

o,Y
ℓ〉〉.

The learning problem in our setting can be defined as follows:

Given: A data set with Eo and Eu.

To Do: Identify the best set of examples Ea ⊂ Eu for

which to obtain more information Xu such that the classifier

performance improves.

In the above definitions, the notion of best and improve

have been intentionally left vague. This definition allows for any

notion of the best examples and improvement of the classifier.

In our work, to be precise, we consider best to denote the set

of the examples with maximal divergence to the observed set

and performance to be the log-likelihood of the classifier. It is to

be noted that the proposed divergence-based example selection

strategy is not necessarily the best but is presumably better than

other existing alternative active-learning strategies like uncertainty

sampling as observed empirically. The classifier we consider is the

well-understood gradient-boosting (Friedman, 2001) and Support

Vector Machines (Vapnik, 2013).

Since our focus is on clinical (study) data, our hypotheses is

that the best examples are chosen to obtain extra information from

those that are significantly different from the remaining examples.

In principle, any distance function could be used to determine the

set of examples Ea from Eu that are significantly different from the

ones in Eo. We use the mean divergence between every example

ei = 〈Xi
o,Y

i〉 in Eu and every example ej = 〈Xj
o,X

j
u,Y

j〉 in Eo
to determine the set of examples in Eu that are different from

the observed set Eo. To compute this mean divergence at every

iteration t, we use the current models: Mt
u = Pt(Y

i | Xi
o) and

Mt
o = Pt(Y

j | Xj
o, X

j
u), learned on the two different sets of data.

More precisely, we compute the mean distance of an example Xi
u

from all the observed examples 〈Xj
o, X

j
u〉 as,

MDi =
1

|Eo|

|Eo|
∑

j=1

Dij, (1)

where the distance Dij can be asymmetric KL divergence, Hellinger

distance, χ2-distance or Total-variation:

Dij = Div
(

P(Y i | Xi
o) ‖ P(Y j | Xj

o, X
j
u)

)

. (2)

A natural question to ask is: what is the need for two different

distributions, even if they are conditionals on the target. Note

that, with the set of examples Eo, all the features are assumed to

be fully observed. Ignoring the informative features (X
j
u) when

computing the distances can lead to a loss of information and our
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experiments confirmed this. Hence, we employ the model learned

over the full set of features for the fully observed example set

Eo, which is typically smaller than the elicitable set in the initial

iterations.

Now that the distances have been computed, we next sort

them to pick the n most distinct examples from Eu. These

n examples are queried for their elicitable features and are

then added to the training set before the model is retrained.

Note that at each iteration, the model P(Y j | X
j
o,X

j
u)

is updated after the examples are appropriately chosen and

queried. The model P(Y i | Xi
o) remains unchanged because

it is trained on Xo of the entire example set Eo ∪ Eu.

The process is repeated until convergence or a predetermined

budget is realized. Although the final goal of our problem is

to maximize the log-likelihood of observed training data for

achieving better test-time performance, it is not possible to do

so without an example selection strategy because we assume that

elicitable features needs to be acquired at a cost and the entire

training data is not observed prior to training. The different

divergence metric helps to identify the data-points that are most

dissimilar to the observed data distribution, hence augments the

observed training data with examples that provide maximum

information to the model for optimizing the underlying objective

(maximizing log-likelihood in this problem). This helps the

model to achieve good performance while balancing the cost of

feature acquisition.

We present a generalized and unifying framework, which can

be adapted in multiple ways:

1. As we discuss in Section 3.1, this formulation admits a

large class of divergences and distance metrics for computing

distances between examples in Eo and Eu. To demonstrate

this generality, we considered several different measures—KL-

divergence, Hellinger distance χ2 distance and Total variation

distances. One could imagine the use of other classifiers, kernels

or learned metrics (Kunapuli and Shavlik, 2012) as well.

2. The gradient boosting classifier can be replaced with any

classifier. An appropriate choice of divergence can greatly

benefit from the choice of the classifier. Our framework is

classifier-agnostic, allowing the user to select the best one for the

task at hand. To demonstrate this, we have considered SVMs as

the base classifier as well.

3. Various convergence criteria can also be used. For instance,

one could simply preset the number of iterations, or employ

a tuning set to determine the change in performance from

the previous iteration or compute the difference between

scores from successive iterations. We employ this final strategy:

computing the difference between log-likelihoods of the training

data in successive iterations. If the difference is smaller than ǫ,

we terminate the algorithm. One could also imagine reducing

the number of queries at every iteration (i.e., successively reduce

n = n
n+1

) such that the number of examples selected at each

iteration naturally comes down to 0.

We present the algorithm (Natarajan et al., 2018) for active

feature elicitation in Algorithm 1. The AFE algorithm takes as

input the set of fully labeled examples (Eo), the set of partially

labeled examples (Eu), the number of active learning examples for

each query step (n) and step size (1). In this algorithm, sufficient

decrease in step size ( n
n+δ

) is used as the stoppage criterion (lines

4, 21) as an example. This can be replaced by other task-relevant

budgets or convergence criteria, as discussed previously.

1: function ACTIVEFEATUREELICITATION(Eo, Eu, n, 1)

2: t = 0 ⊲ iteration counter

3: Mt = TrainInitialModel(Eo, Eu, Xo, Xu)

4: while n ≥ 1 do ⊲ while not converged

5: MD = 0 ⊲ initialize mean divergences

6: for i = 1 to |Eu| do

7: D = 0 ⊲ init divergence for unobserved ex.

i

8: for j = 1 to |Eo| do

9: Dj = ComputeDistance(Ei, Ej, Mt)

10: end for

11: MDi =
∑|Eo |

j=1 Dj

|Eo | ⊲ average distance

12: end for

13: E
q
u = GetTopN(MD)

14: ⊲ n most divergent partially-observed

examples

15: E
q
o = AppendNewFeature(E

q
u)

16: ⊲ actively query to obtain elicitable

features

17: Eo = Eo ∪ E
q
o ⊲ add queried to observed

18: Eu = Eu \ E
q
u ⊲ remove queried from unobs.

19: Mt = UpdateModel(Eo, Eu, Xo, Xu)

20: ⊲ retrain or update classifier

21: n = n
n+1

⊲ check convergence/update budget

22: end while

return TrainFinalModel(Eo)

23: end function

Algorithm 1. Active Feature Elicitation.

After initializing mean distances of each unlabeled example,

AFE iterates through every partially-labeled example in Eu, and

computes the mean distance to all the fully labeled examples in Eo
based on the divergence between the respective currentmodels. The

n-most divergent (dissimilar) examples are selected and features

are actively obtained for these examples (AppendNewFeature).

These examples are then added to Eo and removed from

Eu. A new model can be trained (or updated, depending on

the choice of classifier), and the process is repeated. Note

that Mt consists of two classifiers—one trained on Eo, which

contains new examples provided by the user after active feature

elicitation with all the features, and the other trained on

entire data Eo ∪ Eu. After convergence, Eo has the full set of

training examples.

As mentioned earlier, one could employ any distance

(or pseudo distance) metrics, any compatible classifier and

multiple convergence criterion. In our experiments, we employ

both Gradient boosting and Support Vector Machines as the

classifier; KL-divergence, Hellinger distance, χ2-distance and

Total-variation as the distance measures to identify the unobserved

examples whose features we would like to elicit, and the
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TABLE 1 Several well-known f-divergences for discrete distributions

(where p and q are vector representations of the distributions) are shown.

Divergence f (x) Df (p ‖ q)

KL-divergence x log x
∑

i pi log
pi
qi

Hellinger distance (
√
x− 1)2 1√

2
‖√p−√

q‖2

Total variation 1
2
|x− 1| 1

2
‖p− q‖1

Neyman χ2-divergence (x− 1)2
∑

i
(pi−qi)

2

qi

Their continuous extensions can be obtained by replacing the sums with integrals over the

support of the distributions.

difference in average log-likelihoods between two iterations as our

convergence criterion.

3.1. Other model divergences

The KL divergence is a special case of the Csiszár f -divergence

(Csiszár, 1967), which is a generalized measure for the difference

between two probability distributions, in our case P(Y i | Xi
o) and

P(Y j | Xj
o, X

j
u). Df (P ‖ Q) =

∫

�
f
(

dP/dQ
)

dQ.

Generally, given two distributions P and Q over some space �,

for a convex function f (with f (1) = 0), the divergence of P from Q

is defined as

Df (P ‖ Q) =
∫

�

f
(

dP/dQ
)

dQ (3)

Such f -divergences satisfy non-negativity, monotonicity, and

convexity, though they are not always symmetric. Several well-

known distribution distance measures are special cases of the

f -divergence and are shown in Table 1 and are used in our

experiments for evaluation. For example, the χ2-divergence might

be well-suited for histogram data (Kedem et al., 2012), while the

Hellinger distance might benefit applications with highly-skewed

data (Cieslak et al., 2012).

Recently it was shown that families of divergences including

the α- and β-divergence are also special cases of the f -divergence

(Cichocki and Amari, 2010). The latter includes generalizations

of measures such as the Euclidean distance and the Itakura-

Saito distance, which are appropriate for unsupervised and semi-

supervised learning problems.4 We consider the usefulness of

various divergences to different machine learning problem types

and applications in future work.

3.2. Multi-class and other extensions

As our approach is algorithm- and divergence-agnostic, it

can be seamlessly extended to multi-class settings. As long as

the underlying classification algorithm can produce (multinomial)

distributions over the label space: p = P(Y i | Xi
o) and q = P(Y j |

X
j
o, X

j
u), we can use any model divergence discussed in Section 3.1.

4 See Deza and Deza, 2013 for other useful distance functions.

There are several other possible extensions of the proposed

approach. First is the necessity to move beyond active learning;

while standard methods acquire a label for each example, in

many situations where the goal is to understand why an event

happens (such as clinical studies), it is necessary to obtain more

tests/features. Also, given that the original model is learned from a

small set of features, the model will not be necessarily generalizable.

Second, it is possible that some specific set of features are the most

informative for a specific example. For instance, some subjects’

predictions will benefit from some lab test while a different test is

a better indicator for someone else. Extending our framework to

handle these different types of examples/feature combinations is

outside the scope and is an interesting future direction.

4. Empirical evaluation

We now present evaluation results on one standard UCI data

set (PIMA, Smith et al., 1988) and four real medical tasks to

demonstrate the efficacy of our approach. It must be mentioned

clearly that while healthcare is one domain, the data sets are varied:

from online behavior to images to risk factors to survey. The goal

is to demonstrate the versatility of the approach with real problems

and also that this is a unified framework whose components can be

plugged in according to the domain, data and prior knowledge. It

must also be noted that while healthcare is considered in this work,

the ideas are not limited to this domain and any problem where a

small set of data is fully observed and the rest are partially observed

can render itself as a useful domain for the proposed approach.

1. Parkinson’s prediction from clinical study: The task is to

predict the occurrence of Parkinson’s disease from different

modalities. We focus on a smaller set of features, primarily

motor and non-motor assessments resulting in a set of 37

attributes including the class label. The observed feature is the

MoCA test result, while the other 35 motor scores are treated

as elicitable.

2. Alzheimer’s prediction from ADNI: We assume that

demographics are observed, while cognitive score (MMScore)

and fMRI image features are elicitable. We use the AAL Atlas5 ,6

to segment the image into 108 Regions of Interest (RoIs), and

for each RoI, we derive their summary attributes: white matter,

cerebral spinal fluid, and gray matter intensities along with

regional variance, size and spread.

While the original data set has three classes: Alzheimer’s

(AD), Cognitively Normal (CN), and Mildly Cognitively

Impaired (MCI), we consider the binary task of predicting

AD vs. the rest. The presence of MCI subjects makes this

particular task challenging, yet interesting; this is because these

subjects may or may not end up having Alzheimer’s eventually.

Identifying the right set of subjects to target for feature

elicitation can considerably improve classifier performance, as

we show below.

3. Rare disease prediction from self-reported survey data: The

task is to predict if a subject has a rare disease (MacLeod et al.,

5 http://prefrontal.org/blog/2008/05/brain-art-aal-patchwork

6 http://www.slicer.org
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TABLE 2 Data set details.

Data set # Pos # Neg
# Features # Examples

FO PO FO PO

PPMI 554 919 1 35 5 1,174

ADNI 76 260 6 69 10 294

Rare
disease

87 174 6 63 10 198

PPD 38 115 8 33 6 147

PIMA 268 500 4 4 10 681

FO, Fully observed; PO, Partially observed. # Pos is number of positive examples, # Neg is

number of negative examples, # Features (FO) is the number of features in the fully observed

feature set, # Features (PO) is number of features in the partially observed feature set, #

Examples (FO) is number of examples in the fully observed example set, # Examples (PO)

is number of examples in the partially observed example set. Table appears in Natarajan et al.

(2018).

2016); by definition, a rare disease is hard to diagnose and

affects less than 10% of the world’s population. The data for this

prediction task arises from survey questionnaires and we assume

that demographic data are fully observed. Other survey answers

concerning technology use, disease information and healthcare

details are treated as elicitable.

4. Post-partum depression prediction from online

questionnaire data: Recently, Natarajan et al. (2017) employed

online questionnaires to predict PPD from demographics,

social support, relevant medical history, childbirth issues, and

screening data. We assume that demographics are observed and

are used to select subjects on whom the rest of the data can be

collected to learn the model.

We also test our algorithm on the well-studied PIMA Indians

Diabetes data to demonstrate generality. Table 2 shows the details of

these domains; a common characteristic across all domains is class

imbalance where it is important that the most informative subjects

are added to the training set.

4.1. Evaluation methodology

All data sets are partitioned as 80% train and 20% test. Results

are averaged over 10 runs with a fixed test set. At each active

learning step, we solicit 5 new data points until convergence.

Friedman’s (Friedman, 2001) gradient-boosting and SVM (Vapnik,

2013) were employed as the underlying classifier with the same

settings across all methods. We used linear kernel for SVM. In

order to convert the class scores to probability estimates, Platt

scaling (Platt, 1999) is used to convert the SVM classifier score

to probabilistic estimates using logistic transform. We wanted to

perform evaluations on both linear and non-linear classifiers, hence

the choice of Gradient boosting and Support Vector Machines with

linear kernel. We employ KL-divergence, Hellinger distance, χ2

distance and Total Variation as our distance metric. We compare

three different evaluation metrics: recall (to measure the clinically

relevant sensitivity), F1-score, and geometric mean of sensitivity

and specificity (gmean), that provide a reasonably robust evaluation

in the presence of class imbalance. We considered AUCROC but

as pointed out by Davis and Goadrich (2006), for severe class

imbalanced data sets, this is not ideal and hence we settled on

our metrics.

Baselines: In addition to the proposed AFE approach, we

considered three other baselines: (1) Randomly choosing points

to query which can potentially yield strong results when closer to

convergence. This method is denoted as RND; (2) We also used

uncertainty sampling on the partially observed example set using

only the fully observed features. The top 5 instances that have

the highest entropy were then queried for elicitable features and

added to the training set. This is denoted as USObs; (3) In the

third approach, we imputed all elicitable features using mode as the

feature value; uncertainty sampling is then employed by computing

the entropy on the full feature set, following which the top 5 values

were chosen for querying. This baseline is denoted as USAll.

Other active-learning baselines can be considered (such as min-

max), but these generally tend to be prohibitively expensive in large

feature spaces.

4.2. Results

We aim to answer the following questions:

Q1: Does AFE perform better than other alternative baselines for

active feature elicitation?

Q2: How does the choice of divergence and classifier impact

performance of AFE in different scenarios?

Q3: Is AFE robust to data imbalance and can be extended for

semi-supervised settings?

4.2.1. Performance of AFE as compared to other
baselines

The results across the five domains and all the three metrics

are presented for Gradient Boosting (GB) and SVM Classifier

(linear kernel) with the different distance metric in Figures 2–

9. The various distance metric considered for the experiments

are KL-divergence, Hellinger distance, χ2 divergence, and Total-

variation. Specifically, the experimental results of AFE with GB

& KL-divergence, Hellinger distance, χ2 divergence and Total-

variation are shown in Figures 2–5, respectively and the results of

AFE with SVM&KL-divergence, Hellinger distance, χ2 divergence

and Total-variation are shown in Figures 6–9, respectively. It

can be seen from the above mentioned figures that AFE clearly

outperforms the other baselines in Recall, F1-score, and gmean

and converges faster than the other baselines. These results on

the real-world data sets clearly demonstrates that AFE is a general

framework where the classifier and appropriate divergence metric

can be plugged in according to the domain, data, prior knowledge

of the conditional distributions as well as prior knowledge of the

available and elicitable feature subsets.

It can be observed that AFE outperforms the random baseline

RND on all domains across all metrics for all combinations of

classifier and distance metric,specifically in recall in the first few

iterations in 4 out of the 5 domains as seen in Figures 2–9 where

the effect of choosing themost informative set of examples can have

the maximal impact on the classifier performance. As expected,
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FIGURE 2

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is Gradient boosting and divergence is KL-divergence. Results appear in Natarajan et al. (2018).
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FIGURE 3

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is Gradient boosting and divergence is Hellinger distance.
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FIGURE 4

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is Gradient boosting and divergence is χ2 divergence.
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FIGURE 5

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is Gradient boosting and divergence is Total variation.
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FIGURE 6

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is SVM and divergence is KL-divergence.
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FIGURE 7

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is SVM and divergence is Hellinger distance.
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FIGURE 8

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is SVM and divergence is χ2 divergence.
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FIGURE 9

Recall (left), F1 (middle), g-mean (right) for (from top to bottom) ADNI, PPMI, Rare Disease, PPD, and PIMA. Each iteration corresponds to acquiring

the 5 best examples. Classifier used is SVM and divergence is Total variation.
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FIGURE 10

Average rankings of Recall for all the algorithms considered across all the data sets.

FIGURE 11

Average rankings of F1 for all the algorithms considered across all the data sets.

the variance in recall due to random selection of examples is high.

This can be seen in the leftmost column of all the figures, where

the performance does not increase steadily in all domains. Similar

observations can be made for the geometric mean and F1-score

(middle and right-most column of all the figures).

Observe that as we add more informative examples, the

performance improves significantly for AFE over the rest of the

baselines. This demonstrates that the gains are not necessarily in

the beginning alone. Adding more useful examples can construct

a more robust training set that can lead the classifier to superior

performance. One of the reasons that we are averaging over 10

runs is to alleviate/minimize the effect of sampling bias in the

construction of training set (particularly in the initial samples).

As expected, the variance is initially on the higher side indicating

the effect of sampling bias on smaller training sets but it decreases

as more examples are added. However, this effect is minimal

for AFE that chooses good training examples compared to other

methods. Understanding the effect of the initial choice of samples

on the performance of the classifier is itself an interesting future

research direction.

Similar results can be observed when comparing AFE to

USObs and USAll in that AFE consistently outperforms the

two active learning baselines across all the domains in all the

metrics as seen in Figures 2–9. We hypothesize that the use

of better imputation techniques may improve performance

of USAll. The difference between AFE and USAll in

recall and gmean across all domains is statistically significant

in several iterations. This suggests that other imputation

techniques may marginally improve the performance, but may

not influence the final performance and a good selection

of examples is necessary. The experimental results helps

answerQ1 affirmatively.

Another natural question to ask is how the variance in

performance of the different methods tend to behave across all

data sets? It was generally observed that the AFE had the smallest

variance both in the selection of the first few examples and in the
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FIGURE 12

Average rankings of gmean for all the algorithms considered across all the data sets.

last few iterations of the algorithms. The variance of AFE across all

data sets was at least half the variance of the Randombaseline (RND)

on an average in the first few iterations and as low as 10% of random

selection’s variance in later iterations. This is also consistent across

all metrics for all the combinations of classifier and divergence

metric. When compared to USObs and USAll, in general, the

average variance of AFE was lower across all metrics and all data

sets. While AFE’s variance is significantly better than the random

selection, the differences to the uncertainty methods, while better,

are not necessarily significant.

4.2.2. Impact of the choice of divergence and
classifier on performance of AFE

AFE certainly performs better on certain data sets with a

particular combination of classifier and divergence metric. We

compared the Recall, F1 score and gmean achieved in the final

iteration of AFE to see if certain divergence metric helps the

final training model to perform better. For the ADNI data set,

Total variation performs the best when compared against other

divergence metrics for both the classifiers in Recall and gmean for

the final training iteration (Figures 5, 9). For the PPMI data set,

Hellinger distance emerges the winner for both the classifiers in

Recall as per Figures 3, 7. When compared between the 2 classifiers,

Gradient Boosting is always ranked higher than SVM for the

PPMI and PPD data set across all the divergence metrics except

Total-variation on Recall. Total variation along with SVM works

better on these data sets for Recall as seen in Figure 9. These

show that AFE certainly performs better with some classifier and

divergence metric setting depending on the data set and how much

the elicitable feature subsets in the data set helps in predicting the

target variable.

We also calculated the average rank by Recall, F1-score and

gmean of the various divergence metric with AFE across all the

5 data sets (for SVM and Gradient Boosting) and compared

them against the 3 baselines (Random, US-Obs and US-All)

as shown in Figures 10–12, respectively. Here, two (or more)

algorithms are ranked equally if they are within 3% of each

other’s performance in that metric. From these plots, AFE with

various divergence metric emerges as the clear winner than the

other 3 baselines. For Gradient Boosting classifier, the average

ranking by F1 score and geometric mean suggests that AFE+KL is

better than any other combination of AFE with other divergence

metrics. When comparing the average rank of F1-score between

Gradient Boosting and SVM from Figure 11, it can be seen

that AFE with KL divergence for Gradient Boosting has the

lowest average rank than any other combination of classifier and

divergence metric. Since F1-score is a function of recall and

precision, we can say that AFE+KL with Gradient Boosting on

an average is better than any other combination across all the

data sets. From the above experimental results, we conclude that

no particular combination of classifier and divergence metrics

stands the best; the combination is dependent on the domain and

data distribution.

4.2.3. Robustness of AFE to class imbalance
As shown in Table 2, all domains are imbalanced. For PPMI

and PPD domains where the class prior is skewed, it can be

seen clearly that the AFE achieves a recall of over 0.8 after just

a few early iterations for Gradient Boosting classifier as seen in

Figures 2–5. This demonstrates that AFE can identify the most

important examples that allow for increasing the clinically relevant

sensitivity effectively enabling us to answer Q3 affirmatively.

Our results in all domains show that this method achieves high

recall without significantly sacrificing precision making it an ideal

choice for semi-supervised imbalanced data sets. The intuition

here is that because AFE obtains high recall across all data

sets, in domains where many examples are labeled, it provides

an opportunity for selecting the right sets of examples that

can be labeled or extended with more features. Although the

proposed approach is not a semi-supervised one, it provides an

opportunity for developing methods that can learn from partially

labeled data.
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AFE starts with a very small training sample and iteratively

acquires the data points which are farther from the conditional

distribution of the target given all the features P(Y|Xo, Xu)

thus helping in approximating this distribution better with every

iteration. Experimentally, we have seen that AFE in general selects

data points to maintain the class balance in the training set.

This is because, whenever, samples from a certain class dominates

the training set, the conditional distribution of data points with

minority class deviates from P(Y|Xo, Xu) and hence, these data

points are acquired by AFE which can aid in sampling for

imbalanced data sets. From the above discussion, we conclude that

AFE is effective in handling imbalanced data and can be easily

extended to semi-supervised settings.

Our original motivation was to identify the set of subjects on

whom to perform specific lab tests, given some basic information

about the potential recruits. Our algorithm does not use any

extra information about the potential recruits beyond the observed

features and their labels (whether they are cases or controls) for

identifying the best set of subjects to elicit more information about.

Secondly, we do not make any assumptions about the underlying

distributions of the data or the classifier employed while learning.

We make effective use of the fully observed data (from possibly

a related study) by using them to compute the distance with the

potential cohorts. Finally, AFE is able to perform well on data with

class imbalance while balancing the cost of eliciting features. This

demonstrates that AFE is indeed faithful to the original goals and is

effective in modeling clinical data as shown in our experiments on

several real world data sets.

AFE starts with a very small training sample and iteratively

acquires the data points which are farther from the conditional

distribution of the target given all the features P(Y|Xo, Xu)

thus helping in approximating this distribution better with every

iteration. Experimentally, we have seen that AFE in general picks

data points to maintain the class balance in the training set.

This is because, whenever, samples from a certain class dominates

the training set, the conditional distribution of data points with

minority class deviates from P(Y|Xo, Xu) and hence, these data

points are acquired by AFE which can aid in sampling for

imbalanced data sets thus answeringQ9 affirmatively.

5. Conclusion

We considered the problem of eliciting new sets of features

based on a small amount of fully observed data. We address this

problem specifically in the context of medical domains with severe

class imbalance. Our proposed approach and problem setting has

practical applications in health care domains especially in context

to participant recruitment for a clinical/smart device study where

easily available features can be collected for everyone and potential

participants for whom expensive features needs to be collected can

be identified in order to build a budget friendly machine learning

model. Our proposed active feature elicitation approach computes

the similarity between the potentially interesting examples with

the fully observed examples and chooses the most significantly

different examples to elicit the feature information. These are

then added to the full observed set and the process continues

until convergence. Experiments on four real high-impact medical

tasks demonstrate the effectiveness and efficiency of the proposed

approach. Our approach has a few salient features—it is domain,

model, and distance, i.e., representation agnostic in that any

reasonable classifier and a compatible distance metric for a specific

domain can be employed in a plug and play manner.

We currently elicit all elicitable features for every chosen

example at every iteration. One could extend this work by

identifying sets of features that are most informative for every

example (i.e., the most relevant lab test for each subject) along

the lines of the work of Krishnapuram et al. (2005) that addressed

a similar problem using multi-view, co-training setting which

could allow for the realization of the vision of personalized

medicine. Another interesting future research direction could

be to identify groups of examples (sub-populations) that would

provide the most information at each iteration. Extending the

work to handle fully relational/graph data is another possible

direction. Finally, rigorous evaluation of the approach on more

clinical data sets can yield more interesting insights into the

proposed approach.
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