A Decision-Theoretic M odel of Assistance - Evaluation, Open Problems and
Extensions

Abstract

Thereisagrowing interest in intelligent assistants for a
variety of applications from organizing tasks for knowl-
edge workers to helping people with dementia. In our
earlier work, we presented a decision-theoretic frame-
work that captures the general notion of assistance. The
objective was to observe a goa-directed agent and to
select assistive actions in order to minimize the overall
cost. We employed the use of POMDPsto model the as-
sistant whose hidden state was the goal of the agen.t In
thiswork, we evaluate our model of assistance on areal
world domain and establish that our model was very ef-
fective in reducing the cost of the user. We compared
the results of our model against a cost sensitive super-
vised learning algorithm. We then analyze the possible
open problems in our model and try to provide somein-
tuitions on the possible extensions to our model to han-
dle these open problems.

I ntroduction

The development of intelligent computer assistants has
tremendous impact potential in many domains. A variety
of Al techniques have been used for this purpose in do-
mains such as assistive technologies for the disabled (Boger
et al. 2005) and desktop work management (CALO 2003).
However, most of this work has been fine-tuned to the
particular application domains. Also, much of the prior
work on intelligent assistants did not take a sequential de-
cision making or decision-theoretic approach. For exam-
ple, email filtering is typically posed as a supervised learn-
ing problem (Cohen, Carvalho, & Mitchell 2004), while
travel planning combines information gathering with search
and constraint propagation (Ambite et al. 2002). There
have been other personal assistant systems that are explicitly
based on decision-theoretic principles (Boger et al. 2005;
Varakantham, Maheswaran, & Tambe 2005). Most of these
systems have been formulated as POMDPs that are approx-
imately solved offline.

In the previous work (Fern et al. 2006), we considered
a model where the assistant observes a goal-oriented agent
and must select assistive actions in order to best help the
agent achieve its goals. We described and evaluated a com-
prehensive decision-theoretic framework for intelligent as-
sistants. To perform well the assistant must be able to ac-
curately and quickly infer the goals of the agent and reason
about the utility of various assistive actions toward achieving

Copyright (© 2006, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.

the goals. In real applications, this requires that the assis-
tant be able to handle uncertainty about the environment and
agent, to reason about varying action costs, to handle unfore-
seen situations, and to adapt to the agent over time. We con-
sidered a decision-theoretic model, based on partially ob-
servable Markov decision processes (POMDPs), which nat-
urally handles these features, providing a formal basis for
designing intelligent assistants.

The previous work (Fern et al. 2006) had three major con-
tributions: first was the formulation of the assistant POMDP
which jointly models the application environment and the
agent’s hidden goals, second was the presentation of an ap-
proximate solution approach based on explicit goal estima-
tion and myopic heuristics and third was the evaluation of
the framework on two game-like environments.

In this short paper, we extend the previous work in two
ways: Firstly, we evaluate our framework on a more realistic
domain, the folder predictor (Bao, Herlocker, & Dietterich
2006) of the task tracer project. In this setting, the user is
searching for a file and the assistant would try to recommend
a set of 3 folders for the ease of access. Bao et.al considered
the problem as a supervised learning problem and applied a
cost sensitive predicting algorithm to predict the 3 most rel-
evant folders (Bao, Herlocker, & Dietterich 2006). We try
to model this as a decision-theoretic problem with repeated
predictions as and when the user performs an action. Sec-
ondly, we identify some key open problems in this problem
formulation and motivate these problems for the attention of
the Intelligent Assistants community. We also attempt to ex-
tend our model to handle the issues that we have identified.

The remainder of this paper is organized as follows. In the
next section, we briefly introduce our formal problem setup,
followed by a definition of the assistant POMDP and present
our approximate solution technique based on goal estimation
and online action selection. We then give an empirical eval-
uation of the approach in the folder predictor domain. We
follow this with a discussion of the key improvements that
can be made to the model and present some changes in the
model that handle these improvements.

Problem Setup

In this section and the next couple of sections, we briefly
present the formal definition of the problem and the solution.
We refer the readers to (Fern et al. 2006) for details.

We model the agent’s environment as an MDP described
by the tuple (W, A, A", T, C, I), where W is a finite set of
world states, A4 is a finite set of agent actions, A’ is a finite set
of assistant actions, and T'(w, a, w') is a transition distribu-
tions that represents the probability of transitioning to state

w' given that actiona € AU A’ is taken in state w. The com-
ponent C'is an action-cost function that maps W x (AU A”)
to real-numbers, and I is an initial state distribution over W.

We assume that we are in an episodic setting, where the
agent chooses a goal and tries to achieve it. The assistant
would observe the user’s actions and the world states but
does not observe the goal. The assistant after observing the
user perform an action executes a set of actions ending in
noop action after which the user may perform an action.
Our objective is to minimize the sum of the costs of user
and assistant actions. We model the agent as a stochastic
policy m(alw, g) that gives the probability of selecting ac-
tion a € A given that the agent has goal g and is in state
w and the assistant as a history-dependent stochastic policy
7' (a|lw, t).We assume that we have at our disposal the envi-
ronment MDP and the set of possible goals G. Our objective
is to select an assistant policy ' that minimizes the expected
cost given by E[C(I,Gg,m,w")], where Gy is an prior dis-
tribution over agent goals and 7 is the unknown agent policy.

Assistant POMDP

A POMDP extends an MDP in a partially observable envi-
ronment by including a finite set of observations O, and a
distribution p(o|s) over observations o € O given the cur-
rent state s. A POMDP policy can be viewed as a mapping
from belief states to actions. We will capture the uncer-
tainty of the user’s goal by including the agent’s goal as a
hidden component of the POMDP state. Given an environ-
ment MDP (W, A, A", T, C, I), a goal distribution G, and
an agent policy 7 we now define the corresponding assistant
POMDP.

The state space is W x G so that each state is a pair
(w, g) of a world state and agent goal. The initial statedis-
tribution I’ assigns the state (w, g) probability I(w)Go(g),
which models the process of selecting an initial state and
goal for the agent at the beginning of each episode. The ac-
tion set is equal to the assistant actions A’, reflecting that
assistant POMDP will be used to select actions.

The transition function 7" assigns for any action a ex-
cept for noop, the state transitions from (w, g) to (w', g)
with probability T'(w, a, w'). For the noop action, 7" sim-
ulates the effect of executing an agent action selected ac-
cording to 7. The cost model C” reflects the costs of agent
and assistant actions in the MDP. For all actions a except
for noop we have that C'((w, g),a) = C(w,a). Otherwise
we have that C'((w, g),noop) = E[C(w,a)], where a is
a random variable distributed according to 7 (-|w, g). The
observation distribution ' is deterministic and reflects the
fact that the assistant can only directly observe the world
state and actions of the agent.

A policy «' for the assistant POMDP maps state-action
sequences to assistant actions. In our problem setup the as-
sistant POMDP is not directly at our disposal as we are not
given w or Go. Rather we are only given the environment
MDP and the set of possible goals. As described in the next
section our approach will approximate the assistant POMDP
by estimating = and G based on observations and select as-
sistive actions based on this model.

Selecting Assistive Actions

Since solving the exact assistant POMDP will be impracti-
cal, we proposed an approximation to the POMDP in our
earlier work, which we present here. We consider the selec-
tion of assistant’s actions as a two-step process. First, the
assistant needs to estimate the goal of the user by observing
the user’s actions and then select its best action.

To estimate the goal of the user, the assistant learns the
goal distribution G and policy 7 of the agent by storing the
goal achieved by the user at the end of the episode along with
the set of world state-action pairs for the agent. Currently,
the goal distribution is initialized by solving the user MDP
and define the prior over the agent action using the Boltz-
mann distribution. This is justified as the assumption is that
the agent is reasonably close to optimal. The prior needs to
be updated after every episode and eventually will converge
to the user policy.

Goal Estimation

Given the agent policy m, it is straightforward to incremen-
tally update the posterior P(g|O;) upon each of the agent’s
actions. At the beginning of each episode we initialize
the goal distribution P(g|Oo) to Go. On timestep ¢ of the
episode, if o; does not involve an agent action, then we leave
the distribution unchanged. Otherwise, if o, indicates that
the agent selected action a in state w, then we update the
distribution according to P(g|O;) = (1/Z) - P(g|O¢-1) -
m(alw, g), where Z is a normalizing constant. That is, the
distribution is adjusted to place more weight on goals that
are more likely to cause the agent to execute action a in w. If
the agent is close to optimal, this approach can lead to rapid
goal estimation, even early in the lifetime of the assistant.

Action Selection

In our earlier work, we had approximated the assistant
POMDP M by a set of assistant MDPs for each goal g which
is denoted by M(g). An optimal policy for M (g) gives the
optimal assistant’s action when the agent tries to achieve
goal g. The Q-value of M (g) is denoted by @, (w, a), which
is the expected cost of executing action a and then following
the optimal policy. Given these MDP’s the heuristic value of
executing an action a in state w is

H(w,a,0:) =) Qq(w,a) - P(g|O1)

The actions are then selected greedily according to H
which measures the utility of taking an action under the as-
sumption that the goal ambiguity is resolved in one step. If
the goal distribution is highly ambigous the assistant will se-
lect noop action.

In our experiments with the folder predictor, we resorted
to two kinds of approximations for the H values. One is to
replace the user policy with a fixed default policy and not
updating the goal posterior after every episode. The sec-
ond approximation is to compute the @, values using the
simulation technique of policy rollout (Bertsekas & Tsitsik-
lis 1996). The main idea here is that we compute the value
of Q4 (w, a) by assuming that the assistant performs only a
single action and the agent takes over. More formally, let
C(m,w, g) be a function that simulates n trajectories of 7

achieving the goal from state w and then averaging the tra-
jectory costs. In H(w, a, O¢) we replace Q4(w, a) with the
expectation -,y T(w, a,w') - C(m,w’, g). We combine
the two approximations and use this heuristic in our experi-
ments with the folder predictor.

Folder Predictor

In this section, we present the evaluation of our framework
on a real-world domain. As a part of the task tracer project
(Dragunov et al. 2005), researchers developed a file location
system called folder predictor (Bao, Herlocker, & Dietterich
2006). The idea behind folder predictor is that if we have
knowledge about the user’s file access patterns, we could
help the user with his file accesses by predicting the folder
in which the file has to be accessed or saved.

Bao et.al viewed this problem of folder prediction as a
supervised learning problem and used a cost sensitive pre-
diction algorithm that aimed at minimizing the number of
clicks of the user. The algorithm would choose the top three
folders that would minimize the cost and then append them
to the UI. The user then can choose one of these recommen-
dations or navigate through the windows folder hierarchy if
the recommendations are not relevant. They compared their
results with the windows default recommendations and es-
tablished that their algorithm outperforms the windows de-
fault predictions.

But, their algorithm does not take into account the re-
sponse the user’s reactions to the predictions. For instance,
if the user chooses to ignore the recommended folders and
navigates the folder hierarchy, they do not make any re-
predictions. This is due to the fact that their model cannot
consider the user’s actions in account and just optimizes a
single cost. Our decision-theoretic model naturally handles
the case of re-predictions by changing the recommendations
in response to the user actions. As a first step, we used the
data collected from their Ul and used our model to make
predictions. We use the user’s response to our predictions to
make further predictions. The data set consists of a collec-
tion of requests to open a file (Open) and save afile (saveAs),
ordered by time. Each request contains information such as,
the type of request (open or saveAs), the current task, the
destination folder etc. The data set consists of a total of 810
open/saveAs requests. The folder heirarchy consists of 226
folders.

The state space consists of 4 parts: the current folder that
the user is accessing and the three recommedations. This
would correspond to a state space of size 226 x (*2°). The
action of the user is based on the recommendations of the
assistant. In the worst case, the agent might have to navigate
through all the folders. Hence the action space of the user
would be O(226 x 3. The action space of the assistant would
be the three folders that it has to choose from and would be
of the size (*2°). The cost in our case was the number of user
clicks to the correct folder. In this domain, the assistant and
the agent’s actions strictly alternate as the assistant revises
its predictions after every user action.

We ran our decision theoretic model on the data set. For
each request, our assistant would make the prediction and

then the user is simulated. The user would accept the rec-
ommendation if it shortens his path to the goal else would
act according to his optimal policy. The user here is con-
sidered close to optimal, which is not unrealistic in the real
world. To compare our results, we also used the model de-
veloped by Bao et.al in the data set and present the results in
Figure 1. The histogram presented in the figure presents the
cost required to reach the correct folder. Ideally, we would
like to go to the correct folder in zero or one click (zero click
case is when the top recommended folder is the right folder
and the Ul automatically opens the top recommended folder,
while one click corresponds to opening one of the other 2
recommendations).

Distribution of different costs

I O!d FolderPredictor
451 I New FolderPredictor | |

Percentage

0 1 2 3 4 5 6 7 8 9 10 11
Costs for one open/save

Figure 1: Results of Folder predictor.

It can be observed from the figure that when our model is
used, the number of clicks more than 6 reduces to zero. This
is due to the use of re-predictions in our model which is
possible due to the decision-theoretic framework while Bao
et.al’s model makes a one-time prediction and hence cannot
make use of the user’s response to the recommendations.
But, it can also be observed that their model had a higher
number of zero clicks than ours. This is because, they con-
sider only a subset of the folders for their predictions. They
use information like the task the user is working on to rec-
ommend the folders, while we had to consider all the 226
folders for our hypotheses space to handle the possibility of
a new folder. We are currently trying to incorporate the task
specific information into the folder prediction.

We also compared average cost of using our model to that
of Bao et.al. While the user on an average has to perform X
clicks to reach the appropriate folder in our model, he had
to perform X clicks on an average using their model®. This
clearly demonstrates that our model was more effective in
reducing the number of clicks for the user. This result is not
surprising because when using our model the user does not
have to perform more clicks to reach the folder as evident

YIn their work, Bao et.al compared their method with the win-
dows default prediction and established that their model was sig-
nifi cantly more effective than the default predictions in reducing
the cost of the user.

from the figure. These results indicate that our decision-
theoretic model is effective in reducing the effort of the user
in searching for his files.

Open problems and Extensions

In this section, we try to present the list of assumptions of
the current framework and attempt to remove these assump-
tions.

Partial Observability of the user

In our current model, we assume that the user can com-
pletely observe the environment. This is sometimes an un-
realistic assumption. In real world, the user cannot sense the
environment fully. In this section, we attempt to motivate the
problem of partial observability of the user and extend our
formulation to handle the partial observability of the user.

Consider for example an household assistant and the goals
of the user are to cook some dishes. The ingredients are
present in shelves and cabinets that have opaque doors. The
user does not have complete knowledge of the environ-
ment (i.e., he does not know which ingredient is in which
shelf) while the assistant completely observes the environ-
ment (i.e., it knows the exact location of each ingredient).
The user has certain beliefs about the presence of the ingre-
dients in the shelves and quite naturally he will start explor-
ing. If the assistant knows that the user is exploring, it could
either point to the right doors to open or open the right doors
for the user. The current model has to be extended to capture
the partial observability of the user. As another example, we
could consider searching for a particular webpage. We can
imagine this domain to be similar to the folder predictor do-
main, except that the entire web structure is not known to the
user while the assistant can have the complete knowledge of
the structure. So the user would tend to explore to access the
appropriate webpage and the agent can assist the user in his
exploration.

Currently, the system would try to infer the user’s goals
given his actions. If the user is opening some doors for ex-
ploration, the system would try to estimate the goal after
every opening of the door. The assumption in our current
framework is that the user is optimal w.r.t the goal. This
assumption would mean that the actions of user opening dif-
ferent doors without fetching an ingredient would confuse
the assistant as it will not correspond to any optimal policy
of the user. It is more rational to think that the user is op-
timal with respect to the goal and his belief states. In the
current example, the user does not know where a particu-
lar ingredient is present and the most optimal thing to do to
fetch this ingredient is to open the doors of different shelves
till he finds it. The present framework does not capture the
belief state explicitly and hence cannot deal with the case
where the user is performing exploratory actions. Incor-
porating the belief states of the user in the assistant’s state
space would enable the assistant to make useful inferences
about the user’s goals and his belief states given his actions.
In (Doshi 2004), the authors introduce the setting of inter-
active POMDPs, where each agent models the other agent’s
beliefs. Note that in our setting, since the user is oblivious

of the assistant, there is no necessity of modeling the agent’s
beliefs by the user.

The extension to our model involves two changes. First,
the environment is now modeled as a POMDP as opposed
to modelling as an MDP where the belief states are those of
the user. The environment POMDP extends the earlier de-
fined MDP by including the set of user observations (O,,)
and the observation distribution of the user (u,). Next, the
user’s beliefs must be captured in the Assitant POMDP. Cur-
rently, the state space of the assistant consists of the world
states and the goals of the user. To model user’s partial ob-
servability, we include the user’s belief states as part of the
state space of the assistant. Thus, the new state space of the
assistant is S = W x G x B,, where W is the set of world
states, G is the set of goal states and B,, is the set of be-
lief states of the user. The transition function, cost function
and the observation functions would correspondingly reflect
the change. The Transition fucntion 7" is a mapping from
(w, g,by) to (w', g,b,) for all non-noop actions. For noop
actions, T" simulates the user policy according to the envi-
ronment’s transition function. The Observation function is
still deterministic and the agent can observe the world states
and the agent’s actions. The source of the assitant’s uncer-
tainty is the user’s goal.

L arge state space

One of the important features of our model is that the
POMDRP of the assistant needs to be solved online and the
user policy needs to be updated after every user trajectory
to the goal. The state space of the POMDP has to be very
small to facilitate solving of the POMDP online. Even for
moderate state spaces, it is not feasible to solve the POMDP
online. In our earlier experiments in (Fern et al. 2006)
with the cooking domain, the state space had about 140,000
states and it was not computationally feasible to solve the
user MDP or the assistant MDP and we had to resort to ap-
proximations. It is easy to see that in our current example
of household assistant, the number of states grows exponen-
tially with the number of ingredients and it is not feasible
to solve the POMDP online. There have been many ap-
proaches to handle the problem of large state spaces such
as function approximation, abstraction and model minimiza-
tion techniques. In Electric Elves, since the system monitors
users in short regular intervals, radical changes in the be-
lief states are usually not possible and are pruned from the
search space(Varakantham, Maheswaran, & Tambe 2005).
We feel that it is necessary to explore the use of such tech-
niques for the development of intelligent assistants as many
situations involve a large number of state features.

Also, in the current model, we are assuming that the user
MDP can be solved and use it for initializing the goal dis-
tribution. But, this may not be possible in many cases as
the state space could be very large. In the cooking example,
there could be a very large number of ingredients and each
of them may be in the bowl, shelf or on the cooking table etc
and hence the state space can be huge. In these cases, it is
not possible to solve the user MDP and use it to initialize the
distribution. An obvious choice is to use an uniform distri-
bution over the goals and update the distribution after every

episode. The problem with this method is that the assistant
will not be useful in the early stages until the distribution has
skewed towards a particular goal.

Another alternative that we have used in one of our exper-
iments is to use the optimal policy of the user based on do-
main knowledge (though the underlying MDP is very large,
the policy can be deterministic defined by a set of rules) and
then initialize the goal distribution according to the optimal
policy. For instance in the cooking domain, there are only
a few optimal ways a particular dish can be cooked. Hence,
the user has only a certain number of optimal policies for
cooking these dishes. We can use these optimal policies to
initialize the goal distribution.

Yet another possibility is to leverage the earlier work
on learning apprentice systems and learning by observation
(Mitchell et al. 1994). The user’s actions provide training
examples to the system which can be used for learning the
user policy and the prior distributions.

Changing goals

In many real world situations, the user might change his
mind while trying to achieve his goal. For instance, the
user can decide to change the dish he was trying to cook
based on the time of the day, weather etc (if it is cold out-
side, the user might not prefer a cold salad for dinner though
he might have opened the bag of veggies already). There is
thus a possibility that the user can change his goal midway
while trying to achieve to achieve another goal. Our system
currently computes P(goal | s, a) using all the state-action
pairs. Eventually, it will converge to the right goal. But,
if we observe that the user is doing a small set of actions
that takes him away from the current goal, we can quickly
infer that he is going after a different goal. The system cur-
rently would converge to the correct goal distribution slowly.
Hence, there is a necessity for the framework to model ex-
plicitly the possibility of the user changing his goals while
trying to achieve another.

There has been substantial research in the area of user
modelling. Horvitz et.al took a Bayesian approach to model
whether a user needs assistance based on user actions and at-
tributes and used it to provide assistance to user in a spread-
sheet application(Horvitz et al. 1998). Hui and Boutilier
used a similar idea for assistance with text editing(Hui &
Boutilier 2006). They use DBNs with handcoded parame-
ters to infer the type of the user and computed the expected
utility of assisting the user. It would be interesting to explore
these kind of user models in our system to determine the
user’s intentions and then compute the optimal policy for the
assistant. We believe that incorporating a more richer model
of the user that would explicitly capture the goal change
would make it possible for our system to handle the case
of user changing his goals without having to modify the so-
lution methods.

Expanding the set of goals

In our setting, we assume a fixed set of goals that the user
is trying to achieve. For instance, in the household assistant
domain, the assumption would be that the user can only cook

a few set of dishes. This is sometimes an unrealistic assump-
tion and would seriously limit the effectiveness of the assis-
tant. This fixed set of goals would mean that the assistant is
only capable of assisting only for this set of goals. It is possi-
ble that though the user might be trying to cook a new recipe
but the assistant can still afford to help. There is no possi-
bility of handling this expanding set of goals in our present
formulation. One of the interesting directions is to extend
our formulation to handle new goals as they come and learn
about them once the user has achieved them. Though we do
not expect huge changes to our goal estimation and action
selection procedures, at this point it is not clear at this point
as to what extensions to the model will enable the model to
handle this problem of expanding set of goals.

Parallel Actions

Our current model assumes that the user and the assistant
have interleaved actions and cannot act in parallel. Though
this is not an unrealistic assumption, it would be more use-
ful to make it possible for both the assistant and the user to
perform actions in parallel. For example, while the user is
trying to prepare one part of the recipe, the assistant could
try and prepare the other part of the recipe. This would save
the user the time of waiting for the assistant to complete his
action and then continue with his actions. The amount of
time required to achieve the goal can be reduced drastically
by allowing for parallelism. Allowing parallel actions can
be leveraged if the goal structure is hierarchical as the user
can achieve a subgoal while the assistant can try to achieve
another one. It is not clear yet what extensions to the current
model are required for parallel actions as the user and the
assistant might try to achieve very distinct subgoals. There
are several potential issues like the amount of parallelism al-
lowed, the extent to which the agent can be allowed to be
autonomous (as we do not want the assistant to continue to
perform erroneous actions, for instance, cook something that
is not part of the recipe), user’s adaptability to the assistant’s
actions etc. It is not clear how feasible it would be to solve
the Assistant POMDP with parallel actions, but nevertheless
parallelizing the actions seems to be an interesting area of
research.

Hierarchical Goal structure

There have been several plan recognition algorithms that use
a hierarchical structure for the user’s plan. These systems
would typically use a hierarchical HMM (Fine, Singer, &
Tishby 1998) or an abstract HMM (Bui, Venkatesh, & West
2002) etc to track the user’s plan. Our current formulation
assumes a simple goal structure. Typically, users in real-
world decompose a larger problem into a set of smaller ones
and aim to achieve them. For instance, the higher level goal
of the user might be to cook a particular recipe while the
subgoals might be to have a certain set of ingredients heated
in one bowl and a different set baked in another bowl and
then mix both and heat. The user would then try to acieve
these subgoals individually.

In our current framework, we are not considering hier-
archical goals although we have noted in our earlier work

that it will not be hard to incorporate hierarchies in our set-
ting. The major change would be to the goal estimation part
where the goal structure would be hierarchical. We could
use ideas similar to hierarchical HMMs or abstract HMMs
to perform the goal estimation.

We feel that extending our framework to a hierarchical
setting is critical for solving several of the problems that
were listed above. Using goal hierarchies could make it pos-
sible for the user and the assistant to act in parallel. This
can be achieved by allowing the user and the assistant to
perform different subgoals simultaneously. There has been
a substantial amount of research in the area of hierarchi-
cal reinforcement learning that propose several abstraction
methods for handling large state spaces (Dietterich 2000;
Sutton, Precup, & Singh 1999; Parr & Russell 1997). These
abstraction methods can be used with the hierarchical goal
structure to efficiently solve the POMDP. Also, it appears
that the problem of user changing his goals could also be
handled efficiently by the use of hierarchies for the goal
structure. Another problem which we have not discussed
in this paper but is very important to address is the possi-
bility of the user forgetting subgoals. For instance, while
submitting the proposal, the user might forget to attach his
document. It would very useful if the assistant can infer that
the user has forgotten to attach the document and prevent
the email from being sent and assist the user in attaching the
document. Including the hierarchical goal structure seems
to make it natural to handle the possibility of user forgetting
a subgoal.

Conclusion

In this work, we have two significant contributions: one to
evaluate our decision-theoretic framework and the other to
identify the open problems in our framework and present it
to the Intelligent Agents community. We showed that our
model was very effective in reducing the cost of the user
while accesing the appropriate files. We are currently work-
ing on adopting some knowledge about the tasks in which
the user is working on to increase the percentage of zero
click predictions. We are also currently working on extend-
ing the model to incorporate hierarchies of the goal structure
to handle the some of the problems that we outlined. One of
our goals is to evaluate our myopic heuristics on more com-
plex domains where solving the POMDPs would be imprac-
tical.

References

Ambite, J. L.; Barish, G.; Knoblock, C. A.; Muslea, M.;
Oh, J.; and Minton, S. 2002. Getting from here to there:
Interactive planning and agent execution for optimizing
travel. In 1AAI, 862-869.

Bao, X.; Herlocker, J. L.; and Dietterich, T. G. 2006. Fewer
clicks and less frustration: reducing the cost of reaching the
right folder. In 1UI 06, 178-185.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.;

and Mihailidis, A. 2005. A decision-theoretic approach to
task assistance for persons with dementia. In IJCAI.

Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the abstract hidden markov models. JAIR 17.

CALO. 2003. Cognitive agent that learns and organizes,
http://calo.sri.com.

Cohen, W. W,; Carvalho, V. R.; and Mitchell, T. M. 2004.
Learning to classify email into speech acts. In Proceedings
of Empirical Methods in NLP.

Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227-303.

Doshi, P. 2004. A particle filtering algorithm for interactive
pomdps.

Dragunov, A. N.; Dietterich, T. G.; Johnsrude, K.
McLaughlin, M.; Li, L.; and Herlocker, J. L. 2005. Task-
tracer: A desktop environment to support multi-tasking
knowledge workers. In Proceedings of 1UI.

Fern, A.; Natarajan, S.; Judah, K.; and Tadepalll, P. 2006.
A decision-theoretic model of assistance. In IJCAI (To ap-
pear).

Fine, S.; Singer, Y.; and Tishby, N. 1998. The hierarchical
hidden markov model: Analysis and applications. Machine
Learning 32(1):41-62.

Horvitz, E.; Breese, J.; Heckerman, D.; Hovel, D.; and
Rommelse, K. 1998. The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users. In In Proc UAI, 256-265.

Hui, B., and Boutilier, C. 2006. Who’s asking for help?:
a bayesian approach to intelligent assistance. In IUI, 186—
193.

Mitchell, T. M.; Caruana, R.; Freitag, D.; J.McDermott;
and Zabowski, D. 1994. Experience with a learning per-
sonal assistant. Communications of the ACM 37(7):80-91.

Parr, R., and Russell, S. 1997. Reinforcement learning
with hierarchies of machines. In Jordan, M. I.; Kearns,
M. J.; and Solla, S. A., eds., Advances in Neural Informa-
tion Processing Systems, volume 10. The MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intelli-
gence 112(1-2):181-211.

Varakantham, P.; Maheswaran, R. T.; and Tambe, M. 2005.
Exploiting belief bounds: practical pomdps for personal
assistant agents. In AAMAS.

