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Abstract

Arithmetic Circuits (AC) and Sum-Product Net-
works (SPN) have recently gained significant in-
terest by virtue of being tractable deep proba-
bilistic models. Most previous work on learn-
ing AC structures, however, hinges on inducing
a tree-structured AC and, hence, may potentially
break loops that may exist in the true generative
model. To repair such broken loops, we propose a
gradient-boosted method for structure learning of
discriminative ACs (DACs), called DACBOOST.
Since, in discrete domains, ACs are essentially
equivalent to mixtures of trees, DACBOOST de-
composes a large AC into smaller tree-structured
ACs and learns them in a sequential, additive
manner. The resulting non-parametric manner
of learning the DACs results in a model with very
few tuning parameters making our learned model
significantly more efficient. We demonstrate on
standard data sets and some real-world data sets,
the efficiency of DACBOOST compared to the
state-of-the-art DAC learners without sacrificing
the effectiveness. This makes it possible to em-
ploy DAC:s for large scale real-world tasks.

1. Introduction

The application and adaptation of probabilistic graphical
models for real problems such as bio-medicine, compu-
tational biology have tremendously increased in the re-
cent years. Particularly, there is a surge of interest in
tractable probabilistic models where inference is signifi-
cantly more efficient (Zhao et al., 2016; Darwiche, 2003;
Poon & Domingos, 2011). Of these models, both Arithmetic
Circuits (AC) (Darwiche, 2003) and Sum-Product Networks
(SPN) (Poon & Domingos, 2011) have garnered particular
interest due to their mutual equivalence and their ability to
model several other tractable models (Rooshenas & Lowd,
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2016).

As pointed out by Rooshenas and Lowd (Rooshenas &
Lowd, 2016), most of the learning methods developed for
these models are generative. In the discriminative case, as
they argue, ACs are a better fit for better capturing log-
linear models due to their ability to directly represent the
parameters in their nodes (as against weights in SPNs). Con-
sequently, they developed a discriminative learning method
for ACs that greedily searches through the space of features.
While successful, their work has two limitations: (1) a large
number of parameters that must be tuned and (2) the ACs
are typically limited to being tree-structured and, hence,
may break loops.

To overcome these limitations, we propose the first non-
parametric learning method for discriminative ACs (DACs)
based on gradient-boosting, called DACBOOST. Inspired
by the intuition that many weak learners, in our case tree-
structured ACs, could be more successful in learning a con-
ditional distribution, DACBOOST introduces parameters
as necessary. We derive the gradient updates that are used
to reweigh the examples after each iteration and present
the algorithm for learning weak, tree-structured ACs in a
sequential manner. The benefits of DACBOOST are two-
fold. First, it can repair broken loops by mixing different
tree-structured ACs in a stage-wise manner. Second, it re-
duces the space of structure search and parameter updates at
the same time thus avoiding the seemingly difficult task of
repeated full parameter estimation when scoring each struc-
ture. In our extensive experiments on both the standard data
sets due to Rooshenas and Lowd (Rooshenas & Lowd, 2016)
and on five real-world data sets, we demonstrate both the
effectiveness and efficiency of this boosted DAC approach.

Overall, this paper makes a number of important contri-
butions. We present the first ensemble based learning ap-
proach for ACs. Establishing this link is especially sig-
nificant because (as we state later) structure learning of
complete and valid SPNs or ACs — for discrete domains,
SPNs and ACs are equivalent (Rooshenas & Lowd, 2016)
is difficult (Zhao et al., 2016). Boosting reduces the space
of possible structure search for learning the structure (the
weak ACs) and parameter (leaves of these ACs) simulta-
neously, hence rendering the learning task more practical.
Second, most of the prior approaches have focused on tree-
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Figure 1. Illustration due to (Zhao et al., 2016) that a complete and decomposable AC, here actually an SPN, is a mixture of trees. The
leaves indicate univariate distributions over X; and X». Different colors are used to highlight unique trees, which are products of

univariate distributions. (Best viewed in color)

structured ACs to retain tractability in learning. Triggered
by the view of ACs as mixtures of trees (Zhao et al., 2016),
DACBOOST extends these tree-structured learners towards
learning valid and complete ACs via boosting. Third, our
experimental evaluations on both standard and some novel
and interesting real-world data clearly establish the superi-
ority of our learner. In nearly all the domains, we achieve
equal or better performance for a fraction of the learning
time when compared to the state-of-the-art DAC learner.

We proceed as follows. After reviewing the necessary back-
ground, namely ACs and boosting conditional distributions,
we introduce and discuss DACBO0OST. Before concluding,
we provide empirical evidence on seven standard benchmark
and five novel data sets.

2. Background

Let us start off by reviewing the work on arithmetic circuits
and functional gradient boosting.

2.1. Arithmetic Circuits

Probabilistic graphical models have long been successfully
in a wide variety of modeling tasks. There is an increased
interest in tractable probabilistic models since in traditional
models inference is a function of the tree-width and hence
complex (Chandrasekaran et al., 2008). There is a neces-
sity for tractability in the presence of large amounts of ev-
idence. Consequently, there has been significant progress
in tractable probabilistic modeling in several directions: (1)
bounded tree-width models (Bouman & Shapiro, 1994,
Bach & Jordan, 2002; Gogate et al., 2010; Karger & Sre-
bro, 2001), (2) probabilistic models with tractable factors
such as Markov Random Fields with sub-modular potentials
(Osokin et al., 2011; Vernaza et al., 2008), (3) structure
compression by exploiting share-able parameters such as
associative Markov Networks (Taskar et al., 2004; Munoz
et al., 2008) and (4) compiling models into representations
suitable for efficient inference such as (deep) probabilis-
tic architectures like Arithmetic Circuits (ACs) (Darwiche,
2003; Lowd & Domingos, 2008; Lowd & Rooshenas, 2013)
and Sum-Product Networks (SPNs) (Poon & Domingos,
2011; Gens & Domingos, 2013; Rooshenas & Lowd, 2014).
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(a) Arithmetic Circuit (AC) (b) Conditional AC
Figure 2. Left: Example arithmetic circuit that represents a
markov random field over two variables 1 and z2 and having
potentials w; and ws for the 2 features x1 A x2 and x2. Right:
Conditional AC that represents the distribution P(y|z1) where y
is a query variable and z; is an evidence variable.

We consider ACs and explore an efficient learning algorithm
while retaining the tractability.

The probability distribution induced by a probabilistic graph-
ical model can be represented by a multilinear function
called a network polynomial that consists of sum of product
of indicator variables A\ and the parameters w of the net-
work (Darwiche, 2003). This enables answering marginal
and conditional queries in linear time in the size of the
polynomial by setting the A consistent with instantiations.
However, network polynomials have exponential number
of terms one for each possible state of the set of random
variables, possibly making inference intractable. In these
cases, however, ACs can be used to compactly represent the
network polynomial.

An Arithmetic Circuit AC(X) is a rooted, directed acyclic
graph over the variables X'. It contains + or * as internal
nodes and its leaf nodes are labeled with either a non neg-
ative parameter w or an indicator variable A. Then for any
instantiation x, the value of the circuit AC'(X') is computed
by assigning indicator A\, the value 1 if X" is compatible
with instantiation x and O otherwise. For example, consider
a simple AC as shown in Fig. 2(a) over two binary random
variables z; and zo. Note that by the original definition,
ACs are generative and hence model a joint distribution. The
network polynomial for the above AC, which is multilinear
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in the A and w variables, can be written as;

Ao Aea Wiz + Agy Ac,, 4 Ay Ay + Ao, A,

The complexity of evaluating an AC is linear in the size
of the circuit. The two properties that lead to tractable
ACs as discussed in (Darwiche, 2003; Lowd & Rooshenas,
2013) are, (1) Decomposibility : An AC is decomposable
iff V pairs of nodes (I, l5): I; and I are children of * node
(product) = var(ly) Avar(lz) = 0 (2) smoothness : An AC
is smooth iff V nodes : [ is a child of + node n and var(l) =
var(n). Zhao et al. (Zhao et al., 2016) have shown that ACs
can be viewed as mixtures of trees as illustrated in Fig. 1.

2.2. Learning (Conditional) Arithmetic Circuits

Given that a valid AC can efficiently marginalize over any
variable, they have attracted significant attention. Lowd
and Rooshenas (Lowd & Rooshenas, 2013) proposed an
algorithm to learn circuits directly from data instead of just
compiling them from models. Compiling a Bayesian Net-
work or Markov Network to a valid AC is an expensive task
as pointed out by Rooshenas and Lowd (Rooshenas & Lowd,
2016) due to exponential blow up in the size of the network.
However, when learning discriminatively, i.e. P()|X), one
does not have to marginalize over the variables that appear
in evidence X'. Rooshenas and Lowd suggest that replacing
the indicators A corresponding to the evidence variables
with a constant in a (Conditional) discriminative AC (DAC)
does not impact the smoothness or decomposability over
the query variables (Fig. 2(b) illustrates a Conditional AC
with one query and one evidence variable).

In most prediction tasks, however, we are interested in com-
puting the conditional distribution of a pre-determined set of
response variables given their parents. Thus, modeling such
a conditional via a DAC, where we can treat the entire set of
parents as evidence variables, is sufficient. This allows us to
exploit the advantages of discriminative training of DACs, as
pointed out earlier, for learning tractable probabilistic mod-
els from labeled data. Rooshenas and Lowd (Rooshenas &
Lowd, 2016) proposed DACLEARN and showed how it can
learn the structure of a DAC by optimizing the penalized
conditional log-likelihood (C' LL). Their work provides an
insight into how optimizing the C LL (log P()Y|X’), where
X is the set of evidence variables) for learning DAC, is con-
siderably more tractable even for large tree-width models, as
opposed to generative training of a typical AC. DACLearn,
thus, iteratively grows the DAC, choosing a set of most
informative features at each step of the gradient of penal-
ized C'LL. Their structure update technique follows from
their previous work on transforming MRFs to ACs (Lowd
& Rooshenas, 2015; 2013).

A similar approach has been proposed for discriminative
learning of SPNs by Gens and Domingos (Gens & Domin-
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Figure 3. Learning of Discriminative Arithmetic Circuits via boost-
ing. As can be seen, at each iteration a small weak DAC is learned
for each query variable. Once a DAC is learned at each iteration,
the weights of the examples are computed and a new AC is learned.
These are then added to the model and the process continues until
convergence.

gos, 2012; 2013), an equivalent representation based on
network polynomials. Note that the same insights and prop-
erties of conditional validity and smoothness as DACs apply
to discriminative SPNs, when learning conditional distribu-
tions over query variables given the evidence. Hence, this
work also optimizes penalized conditional log-likelihood.
Gens and Domingos, however, analyze the effects of 2 dif-
ferent types of inference, namely, marginal inference and
Most Probably Explanation (MPE), for structure scoring
and parameter estimation during learning. They show that
hard inference via MPE results in better learning as it allevi-
ates the gradient diffusion problem in a deep probabilistic
model such as SPN.

2.3. Gradient Boosting for Conditionals

Functional Gradient Boosting (FGB) is motivated by the in-
tuition that inducing an ensemble of weak models to change
one’s probabilistic predictions locally can potentially be
more expressive and efficient than finding a single, highly
accurate model. Specifically, the problem of learning con-
ditional probabilistic models is transformed into learning a
sequence of function approximation problems (following
the work by Friedman (Friedman, 2001)). Thus a condi-
tional probability distribution is represented as a weighted
sum of regression models learned sequentially via a stage-
wise optimization (Natarajan et al., 2012; Khot et al., 2011).

For a particular example y; its conditional distribution given
its parents x; can be learned by fitting a model P(y|x) o
e?®¥) and can be expressed non-parametrically in terms
of a potential function ¥ (y;; x;):

e (yi; i)

P(yi|x:) = W

Instead of learning in the parameter space (FP), gradient
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is obtained in the functional-space ). The key is to suc-
cessively approximate v as a sum of weak learners, which
are typically regression trees. Staring from an initial g
functional gradient ascent iteratively adds gradients A;.
For every iteration ¢ a new weak model h; is fitted to
the gradient. After m iterations, the potential is given by
Ym = Yo + Ay + ... + A,,. Here, A,, is the functional
gradient at step m,

Am =Mm - Ex,y 10g P(y ‘ X5 ¢m—1):|

0
8"/’m71
where 7,, is the learning rate. Dietterich et al. (Dietterich
et al., 2004) postulated that evaluating the gradient for every
training example and fitting a regression tree to these derived
examples i.e., fitting a regression tree h,, on the training
examples [(z;,¥:), Am(yi; ;)] is a close and reasonable
approximation of the desired A,,, and essentially, points in
the same direction. Thus, ascent in the direction of h,,, will
approximate the true functional gradient. This approach
has been adapted for learning conditional models in condi-
tional random fields (Dietterich et al., 2008), dependency
networks (Natarajan et al., 2012), markov networks (Khot
et al., 2011), logisitic regression models (Ramanan et al.,
2018) and conditional exponential distributions (Yang et al.,
2016).

3. Learning Discriminative ACs

Now that we have all the necessary tools to tackle the prob-
lem of learning DACs we formally define our problem as:

Given a data set D(X,)), where ) is a set of query
variables, and X is a set of evidence variables, find the
structure and parameters of a discriminative arithmetic
circuit (DAC), i.e., the distribution P()|X)).

We adopt the definition of discrimative ACs (DACs) as de-
scribed by Rooshenas and Lowd (Rooshenas & Lowd, 2016).
A conditional AC defines a tractable conditional probabil-
ity distribution, i.e., P() | X) over the query variables )
given the evidence A'. As specified in their work, the va-
lidity of conditional ACs are more relaxed compared to the
original definition of ACs. The key difference as pointed
out earlier is the fact that one allows for conditioning the
query variables over the evidence. This facilitates training
DACs in a manner similar to conditional Random Fields
(CRFs) (Rooshenas & Lowd, 2016). Note that DACs offer
similar benefits as CRFs in modeling complex dependen-
cies between evidence and query while retaining tractability
for learning and inference. Given that gradient-boosting is
state-of-the-art in learning CRFs (Dietterich et al., 2008;
Chen et al., 2015), we derive a learning algorithm based
on gradient-boosting for full model learning (structure +
parameter learning) of DACs.

3.1. Gradient Boosting for Conditional ACs

Throughout the derivation, we adopt the following con-
vention for notation - subscript i denotes the i*" example,
superscript j denotes the ;' feature of the evidence set
and superscript (p) denotes the p! query variable. Given
this notation, following DACLearn (Lowd et al. 2016) that
optimizes conditional log-likelihood of train data set D by
finding the best set of features f, where, y = Y® C Y and
x C X, we define CLL(D) :=

Z log P(y|x) = Z Zw]fj log Z (x)
(v,x)eD (yx)€D J

where Z denotes the normalization constant (partition func-
tion).

As mentioned earlier, functional-gradient boosting obtains
point-wise gradient for each example separately. So now
considering the log-likelihood for a specific example 7 and
a specific query variable y (we drop the superscript for

brevity),
ijf]
Zzwjfj yi = 1]x;)—
J
log > exp (D w! f(y; = v/|x;))
y’ J

To adapt functional gradient boosting to the task of learning
DAC, we map this conditional probability definition from
the parameter space to the functional space . Like CRFs,
the definition of DACs, naturally allow for the functional
representation. 1 for ¢-th example is directly,

Yyilxi) =Y w7

J

log P(y; = 1]x;) = = 1|x;) — log Z(x;)

Specifically, we denote v (y;|x;) as the potential of y; given
x;. As with CRFs, and other adaptations of gradient-
boosting (Natarajan et al., 2012; Khot et al., 2011), we
explain the process assuming binary query variables. How-
ever, they can be easily extended to the multivalued case.
Now, the above equation can be written from the perspective
of Y = 1,

log P(y; = 1|x;) =

Gy = 10x;) —log > exp(v(y; = y'[x:)))

Now computing the pointwise derivative of CLL w.r.t ¢ V2
we get;
exp(¥(y; = 1]x;))
>y exp((y: = y'[xi))
— Py = 1|x;)

P(yi|xi) _ %) —
(i) Wil

= I(yilx;)
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Note that the above expression is similar to the gradients for
well-known probabilistic models such as CRFs (Dietterich
et al., 2008), dependency networks (Natarajan et al., 2012)
and Markov (logic) networks (Khot et al., 2011) to name a
few. Thus the weight (gradient) of each example is simply
the difference between whether the query variable in the
current training example is true according to the data (de-
noted by indicator function I) and the predicted probability
of the query variable being true according to the current
model. These gradients are then used in the next iteration of
boosting where a weak learner (DAC in our case) is learned
to fit these pointwise gradients. The score of the structure
using the set of candidate features F can be rewritten as;

Score(F) = Ay (F)

where A;; denotes the change in CLL. The goal is to iden-
tify the features that maximize this change in CLL.

A key aspect of our learning approach is that, unlike in
the approach due to Rooshenas and Lowd (Rooshenas &
Lowd, 2016), there is no necessity to introduce an explicit
penalty on the number of edges and parameters in the cir-
cuits. Learning weak models automatically takes care of
regularization by controlling the depth of the learned ACs.

Specifically, given the functional-gradients for each ex-
ample, we learn a small, tree-structured AC by searching
through the space of potential features to add next by mini-
mizing the weighted variance of the conditional distribution
according to the current model. Once the AC is constructed,
the next step is to estimate the weights w” at the leaves of
the DAC. To estimate them, we maximize the increment in
CLL function:

Aa(F)= > Y wP(f/[x) — Alog Z(x)

(yx)eD J

where P is the new empirical probability distribution after
introducing the new candidate features. Computing the
gradient w.r.t. parameter becomes:

Bhall) _ g~ e @)P(FI)
Owi e exp (Alog Z(x))

Putting the different pieces together, we derive the DAC-
BooOST algorithm that we describe next.

3.2. The DACBOOST Algorithm

Alg. 1 summarizes our boosting approach. Here
DACBOOST() is the primary procedure that learns an en-
semble of gradient boosted Arithmetic Circuits for a given
query variable JP) and training data D. As explained ear-
lier, X and ) are sets of evidence and query variables re-
spectively, and so, a training example D; = (X;, );). The

Algorithm 1 DACBO0OST: Boosted Arithmetic Circuits
Require: X', ), D, p
1: Initialize to uniform prior: Model Fy < vy
2: Learn upto M gradient steps: m = 1
repeat
Fm — Fm,1
S,(f;) < ComputeGradientsy(p), X, F,,
Gradients {Al}gl V examples y; € Y (®)
S XY SubSampleNegSSfl)),X,y(p)
Y < LearnWDACS', X', )’
until m = M
Return F,,

_
S AN 2 A A U

Ju—

argument p is the index to the particular query variable in
Y for which the discriminative model will be learned. For
a collective classification task the function is called succes-
sively for each query variable. Since there could potentially
be multiple query variables, we denote the current query
variable as V@),

In the m!" iteration of functional-gradient boosting, we
compute the functional gradients for these examples using
the current model F,,, and the evidences of y as per this
model (line 5). The gradients Sw {(yi, Ai)} (where
A; is actual gradient value for the example y;) are then
used to learn a new weak AC v, and added to the model
[lines 6,8]. Note, however, that SUBSAMPLENEG() [line
6] sub-samples from the negative examples and the cor-
responding gradients and evidences ()’ c Y = {y :
Yy,y € YP)y € V' y = 0,y consistent with sampler},
S’ ={s;:Vi,s; € Sy(,f),yi €Y'}and X' = {x; : Vi,x; €
X,y; € Y'}). Learning a new weak AC based on the cur-
rent sub-sampled gradients involves a call to the procedure
LEARNWDAC() as summarized in Alg. 2.

Alg. 2 outlines the procedure LEARNWDAC, that takes the
gradients and the corresponding evidence and labels (for the
query variable )) as input. The model and the supporting
data structures are initialized [lines 2-5]. Note that w refers
to all the parameter nodes in a DAC. fs is a min-heap data
structure used later to search for the best set of features to
be considered in constructing the DAC. To learn a valid
conditional weak AC to fit the gradients at the current step
we have to determine the best (most informative) feature set
and it is done in a step-wise fashion. First, a set of regression
trees (rooted at every feature/variable in &’) are learned
using weighted variance as the scoring function [lines 6-9].
The feature set F is then computed by first constructing a
min-heap fs with the features from the learned regression
trees, using their weighted-variance scores. We search and
retrieve from min-heap, the edges with weights lower than 2
times the highest weighted variance as seen from the current
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Algorithm 2 LEARNWDAC: Fit Weak Conditional AC

Require: S, X, Y®
: The gradient set S = {(y;, A;)}
Conditional Arithmetic Circuit Cy, < ()
Initialize empty AC; w: set of parameters
Initialize min-heap fs < ()
Feature set F < ()
Regression Tree set T <— ()
repeat
T} < Regression Tree rooted at f;
Scored using Weighted-Variance
T+ TuUT;
: until V features f; € &
. fs < Min-Heapf; : VT € T, Scores
i F« FU{f}:selectbestset {f} ={T}CT
: min-heap search on fs w/ threshold €2 * max
: repeat
if Acll(fk:) > 7 then
Update C, with fj
Update parameters w
end if
. until each f in F
: Return Cy

PRID AR

[ S I S e e e e e e
S AN A AR AR el N

feature set given by

threshold = 2 - max Score(T)
TeT

[lines 10,11]. F is used to construct a DAC Cy, by itera-
tively scanning each feature fj, in the feature set and includ-
ing it in the AC if the change in conditional log-likelihood
A (fr) is above a positive threshold 7 (7 > 0) [lines 12-
17]. Whenever a feature fj is included in the DAC, we
jointly optimize the parameters w after updating the initial
structure. We use L-BFGS to optimize the weights in our
model. Note that, for constructing/updating the AC C},
[line 14] we utilize the ‘Split AC’ approach proposed in the
ACMN algorithm (Lowd & Rooshenas, 2013).

3.3. Discussion — DACBOOST closes loops by
inducing wide-and-deep DACs

Before moving on to our empirical evaluation, let us discuss
DACBo00sST. DACBoOST differs from the currently best
discriminative learning algorithm DACLEARN (Rooshenas
& Lowd, 2016). While DACLearn induces tree structured
ACs, ours is capable of learning DAGs. Intuitively, their
approach can be viewed as breaking some loops in the true
generative model. Since we boost the learning, we “over-
lay” several trees and hence could potentially repair some
loops, that may otherwise have been broken if a single tree-
structured AC was learned. Exploring the connection to
tree-reweighted bounds and/or stacking learning to deeply
understand the properties of our learning algorithm is an

Data sets | # Variables # Train Egs
ADNI 29 350
DDI 25 16000
DDoS 20 33650
PPD 66 130
PPMI 119 1680

Table 1. The number of variables including the query and evidence
variables in the real data sets.

interesting future direction. Also, we are strongly motivated
by the observation that complete and valid SPNs (corre-
spondingly ACs) can be induced by a mixture of trees (Zhao
et al., 2016). Thus, our work can be seen as extending tree
SPN and AC learners with boosting to learn valid DACs
with the observation that valid SPNs (and ACs) are additive
tree models. That is, we widen the deep DACs by boosting
in features and feature combinations as needed. We verify
this empirically in the next section by demonstrating that our
DACBOOST algorithm learns effective DACs by achieving
equal or better performance in nearly all the domains as the
state-of-the-art DACLearn algorithm. By virtue of learning
shorter models, our approach is significantly faster than the
original learning algorithm.

4. Empirical Evaluation

We aim to answer the following questions explicitly in our
experimental evaluations:

(Q1) Is DACBOOST competitive with state-of-the-art in
terms of predictive performance as measured by condi-
tional log-likelihood?

(Q2) Can boosting DACs actually be faster than learning a
single DAC?

To this end, we implemented DACBOOST as an exten-
sion to the DACLEARN code-base available as a part of the
open-source Libra toolkit! (Lowd & Rooshenas, 2015); con-
sequently, DACBOOST inherits all the system requirements
and the library dependencies as the original DACLEARN.
We evaluated DACB0OOST and DACLEARN on both real
and standard data sets compared to state-of-the-art discrimi-
native structure learning algorithm for ACs, DACLearn. All
experiments were conducted on Intel(R) Xeon(R) CPU ES5-
2630 v3 server machines, clocking @ 2.40GHz and usable
memory of 235GB.

4.1. Data Sets Description

We investigated (Q1), (Q2) on both standard domains and
some novel domains for probabilistic modeling. Specifically,

"http://libra.cs.uoregon.edu/
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we chose four clinical/medical data sets, a network traffic
for DDoS attack detection data set and some standard data
sets. We now describe the data sets briefly focusing on the
novel ones:

1. Alzheimer’s: The Alzheimer’s Disease Neurolntiative
(ADNTI?) is designed to verify whether MRI and PET
images, genetics, cognitive tests and blood biomark-
ers can be used for early prediction Alzheimers dis-
ease. We learn a DAC for modeling Alzheimer’s vs
cognitively normal, conditioned on the demographics
features and MMScore (cognitive test score).

2. Drug-Drug interactions (DDI): This data set consists
of 78 drugs obtained from (DrugBank?®). The goal is
to learn a distribution of drug-drug interactions condi-
tioned on the chemical pathways (Dhami et al., 2018).

3. DDoS attack detection (DDoS): Employed in the
work of Ricks et al. (Ricks et al., 2018b), benign and
large-scale botnet network traffic is captured for use in
DDoS attack detection. A key aspect is the automation
of client-side human behavior for generation of benign
network traffic in a manner scalable to network size
(Ricks et al., 2018a). Our goal is to learn a CAC model
for attack modeling given benign and botnet network
traffic.

4. Post-Partum Depression (PPD): Inspired by the
work of Natarajan et al (Natarajan et al., 2017), the goal
is to model post-partum depression diagnosis based
on online questionnaire data including demographics,
family history (relationship), social support, economic
status, infant behavior and CDC questions.

5. Parkinson’s: Parkinson’s Progression Markers Initia-
tive (PPMI*) is a study designed to identify biomark-
ers that impact Parkinson’s progression in a sub-
ject. Features include imaging data, clinical data, bio-
specimens, demographics and Montreal Cognitive As-
sessment Score (MoCA) and the goal is to learn the
conditional distribution of occurrence of PPMI (Dhami
etal., 2017).

The number of variables and training examples in each of
these novel data sets are summarized in Tab. 1. In addition,
we employed the benchmark data sets that were extensively
used in prior work on learning SPNs and ACs (Rahman et al.,
2014; Davis & Domingos, 2010; Gens & Domingos, 2013;
Rooshenas & Lowd, 2014; 2016). The goal was to have
mix of both established benchmarks where DACLEARN
has state-of-the-art performance and some novel domains
for learning discriminative probabilistic models.

Zwww.loni.ucla.edu/ADNI

*https://www.drugbank.ca/
“www.loni.ucla.edu/PPMI

4.2. Experimental Protocol

Following the experimental protocol of the previous
work (Rooshenas & Lowd, 2016), we created train and
test sets (with 80-20 split). For DACLearn, we used the
parameterization as suggested in the paper with L1 prior of
0.1, 0.5, 1, and 2, and feature penalties of 2, 5, and 10, and
an edge penalty of 0.1, a maximum circuit size of 1M edges,
and a feature batch size of 2. In some datasets, we bounded
the learning and inference time of DACLearn method to
300 times that of the reported learning and inference time of
DACBoost in our experiments. For DACBOOST, based on
the training conditional log-likelihood, we chose the number
of weak DAC:s to be between 3 and 8.

4.3. (Q1&2) Predictive Performance and Run-Time

The predictive performances and running times on the 5
novel data sets are summarized in Tab. 2. As can be seen, it
is fairly clear that DACBOOST is at least as good as or better
than DACLearn in several of these data sets (4/5). This
provides an affirmative answer to (Q1). More importantly,
it is faster in the majority of the data sets and in some
cases even an order of magnitude faster. This answers (Q2)
affirmatively.

To understand the differences, we focus on specific data
sets. Consider the lower performance in DDT data set. On
inspection, this data set is quite sparse. There are several
features whose values are 0 uniformly across all the exam-
ples. Our hypothesis is that such features are not specifically
useful for constructing weak ACs and hence boosting does
not perform as well as DACLearn (even though it is not
significantly worse). In DDoS data set, many of the exam-
ples are repeated and the amount of these repetitions is high.
In DACBOOST, in Alg. 2, it can be observed that we sub-
sample the negatives. This subsampling process, with large
number of repetitions, can be ineffective, thus explaining
the slower convergence rate (even though it converges with
minor improvement over DACLearn). Finally, in the cases
where DACBOOST is better, for instance in ADNTI, the data
set is quite clean with nearly no missing/repeated values.
Both algorithms have reasonably good performance while
DACBOOST is better in terms of training time (nearly half
of DACLearn). Over all, DACBOOST performs equally or
better than the strong baseline in majority of the data sets.

The results on the benchmark data sets used previously in
learning ACs and DAC:s yield a clearer picture. The first
key observation across all data sets is that, the performance
of DACBOOST in terms of learning time is significantly
faster than the state-of-the-art in most cases. In some do-
mains such as MSNBC and Plants, the learning time of
DACBOOST is order-of-magnitude smaller. This allows us
to answer (Q2) affirmatively. The boosted approach can be
faster than learning a single AC by virtue of learning smaller
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Data sets DACB.OOST DACLearn Speedup
CLL | Time (Sec.) | CLL | Time (Sec.)
ADNI -0.178 0.950 -0.180 1.90 2.000
DDI -0.264 133.87 -0.245 158.86 1.186
DDoS -0.018 133.52 -0.019 121.11 0.907
PPD -0.411 12.19 -0.785 13.83 1.134
PPMI -0.163 353.74 -0.188 522.99 1.478

Table 2. Evaluation results of DACBOOST on real domains (data sets). Conditional log-likelihood, CLL, illustrates the effectiveness
(higher =- better), while the running time, Time(Sec.) shows the efficiency (lower = better). Speedup is the ratio of the running time of

DACLearn to that of DACBOOST.

Data sets DACB.OOST DACLearn Speedup
CLL | Time (Sec.) | CLL | Time (Sec.)

Jester | -0.409 481.06 -0.665 9851.41 20.478
KDDCup | -0.073 756.68 -0.073 1248.77 1.650

Kosarek | -0.011 1355.84 -0.021 3778.92 2.787
MSNBC -0.108 76.61 -0.110 12153.90 158.640
NLTCS -0.148 17.01 -0.152 40.35 2.372
Plants | -0.298 467.60 -0.255 13077.74 27.967
WebKB -0.178 6154.40 -0.293 17840.81 2.900

Table 3. Results of DACBOOST on benchmark data sets that have been used and reported in DACLEARN (Rooshenas & Lowd, 2016).
Conditional log-likelihood, CLL, shows the effectiveness (higher = better), while the running time, Time(Sec.) shows the efficiency
(lower = better). Speedup is the ratio of the running time of DACLearn to that of DACBOOST.

ACs. To answer (Q1), when observing the CLL values in
the table, it can be easily observed that the boosting ap-
proach is equal or better in nearly all the domains. The one
domain where it is worse is Plants and in that domain,
the efficiency is significantly higher (about 28 times faster)
for a small loss in CLL. Across all the domains, it can be
stated that the boosting approach is indeed more efficient
(with speedups ranging between 1.65 to 159) and equally ef-
fective when compared to learning single ACs. Specifically,
on the largest data set ( MSNBC with 219k examples), the
difference is significant in terms of learning time illustrating
the potential of DACBOOST on large data sets.

In summary, the empirical evaluations on novel and estab-
lished benchmark data sets appear to clearly demonstrate the
potential for learning DACs in a stage-wise manner. Even
in domains where there is a small loss in performance, the
learning time is significantly faster than learning a full DAC.
Construction of a full DAC from these boosted DACs is an
interesting and immediate direction for future analysis. In
any case, all the questions can be answered affirmatively.

5. Conclusions

Arithmetic circuits emphasize the important role of depth
in learning tractable probabilistic models. In this paper, we
argued that width is equally important. Unfortunately, wide
and deep probabilistic models are more difficult to train. We

presented the first boosting framework to ease the training
of tractable discriminative probabilistic models, specifically
conditional ACs. We derived the functional gradients of the
examples, outlined the method for learning weak ACs and
presented the algorithm, called DACBOOST, for learning
them given the data. Our empirical evidence shows that
boosted conditional ACs can gain predictive performance,
sometimes in an fraction of time.

There are several avenues for future work: (1) analysis of
the theoretical properties including bounds and convergence,
(2) amore comprehensive evaluation on all the standard data
sets used in (Rooshenas & Lowd, 2016). Here, carrying over
ideas of residuals networks (He et al., 2016) to ACs appears
to be promising. Using domain-specific human input as
an inductive bias could make the algorithm converge even
faster. Finally, how to make a broader class of tractable
probabilistic models including generative models wider and
deeper remains an open question from both a theoretical as
well as an algorithmic perspective.
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