
Learning Relational Structure for Temporal Relation Extraction

Tushar Khot, Siddharth Srivastava∗, Sriraam Natarajan+, Jude Shavlik
University of Wisconsin-Madison, USA

+ Wake Forest University, USA

Abstract

Recently there has been a lot of interest in
using Statistical Relational Learning (SRL)
models for Information Extraction (IE). One
of the important IE tasks is extraction of
temporal relations between events and time
expressions (timex). SRL methods that use
hand-written rules have been proposed for
various IE tasks. In contrast, we propose an
approach that employs structure learning in
SRL to learn such rules. Although not re-
quired, our method can also incorporate ex-
pert advice either as features or initial theory
to learn a more accurate model. We present
preliminary results on the TempEval-2 task
of classifying relations between events and
timexes.

1 Introduction

Information extraction (IE) has been an important
problem in the Natural Language Processing (NLP)
community. One specific challenging IE problem is ex-
traction of temporal ordering between events and tem-
poral expressions. The introduction of corpora such
as the TimeBank and TimeML makes it possible to
use machine learning methods to learn ordering re-
lations between events and time expressions (timex).
For example, for the sentence “He met the ambas-
sador on June 3rd.”, we should extract the relations
OVERLAP("met", "June 3rd") and BEFORE("met",

DOCTIME) where DOCTIME corresponds to the docu-
ment creation time.

The TempEval dataset [1] simplified the TimeML an-
notations by using six coarse-grained temporal or-
dering relations between events and timexes; events
and document creation time; and between events.
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TempEval-2 [2] extended this dataset to six tasks in-
cluding the three tasks from the original dataset.

Most of the approaches applied to the TempEval tasks
use propositional features and independently learn re-
lations for each task. However, learning to predict each
task independently can lead to inconsistencies in the
final prediction. For example, predicting event A hap-
pened before time T (A < T) and event B happened
after time T (T <B) is inconsistent with predicting
event A happened after event B (A > B).

There have been approaches to handle these global in-
consistencies for propositional models, such as creating
a globally consistent set of joint predictions by select-
ing from the individual predictions during inference
[3]. In this work we concentrate on employing the re-
lational approach to address this issue. Relational ap-
proaches have the advantage of focusing on the joint
set of predictions during learning, rather than defer-
ring the consideration of interaction among predictions
to the inference step

Using SRL models such as MLNs would allow joint in-
ference across various examples and tasks. As shown
above, in the TempEval task we need to ensure consis-
tent ordering between events and timexes. Also, the
i.i.d. assumption made by most propositional meth-
ods is not valid as the events are not independent,
further making the case for using SRL models. Fur-
thermore, many constraints are not necessarily hard
constraints in this task. For example, if event A oc-
curred before event B and event B overlapped with C
then it is likely that event A occurred before event
C. Hence, Yoshikawa et al. [4] and more recently
UzZaman and Allen [5] used Markov Logic Networks
(MLNs) to specify the model as well as the global con-
straints as weighted first-order logic rules.

We propose using structure-learning approaches from
SRL to learn rules in the absence of expert advice
by using boosted Relational Dependency Networks
(RDNs) [6]. We also propose two extensions to lever-



Figure 1: Sample TempEval-2 annotations

age expert advice whenever available. Preliminary re-
sults of our approach show promise for structure learn-
ing approaches in IE and other NLP tasks.

2 Background

RDN-Boost: RDNs are relational extensions of de-
pendency networks, which are directed graphical mod-
els that may contain cycles. The joint distribution can
be factored as product of individual conditional distri-
butions. Natarajan et al. [6] proposed a method based
on functional gradient boosting where each conditional
distribution P (x|Pa(x)) is approximated by a sum of
relational regression trees (RRT) that are grown in a
stage-wise manner. We refer to previous work [6] for
more details. We chose this approach due to its com-
petitive results across a variety of tasks in SRL [6].

TempEval Tasks: The TempEval task [1] in Se-
mEval 2007 used the TimeBank corpus to create three
separate relation-extraction tasks: 1) identify relations
between event and timex, 2) identify relations between
event and document time and 3) identify relations be-
tween events. The TempEval-2 task extended this
dataset to include the problem of identifying timexes
and events along with their properties. It also modified
task 3 of the previous TempEval into temporal order-
ing tasks between: 1) events in consecutive sentences
and 2) events where one event syntactically dominates
the other. We show preliminary results in Section 4
for identifying relations between events and temporal
expressions (called task C in TempEval-2). Figure 1
shows a sample TempEval-2 annotation. e133, e134

and e135 are the event words whereas t239 marks
a timex. In this example, since the announcement
happened in September, the annotations marked an
OVERLAP relation between e133 and t239.

3 Structure Learning for TempEval-2

We first use the Stanford NLP toolkit1 to convert the
documents into first-order logic facts. We then use
these raw features to create richer features based on
our analysis of the domain. If provided, we can also
use expert advice such as the rules written by previous
work in this domain as the initial model. Given the
initial model and the set of facts, we use RDN-Boost
to learn a joint model for the target relations. Figure

1http://nlp.stanford.edu/software/corenlp.shtml

Figure 2:
Flowchart
describing
our approach
for relation-
extraction

Example Definition

wordText(W3, Word W3 corresponds to the token
occurred) occurred in the article

wordLoc(S1, W1, 1)
Word W1 is the first word
of the sentence S1

wordType(W5, NN) Word W5 is a noun (NN)
phraseType(P3, NP) Phrase P3 is a noun phrase (NP)
phrHasWord(P3, W5) Phrase P3 contains the word W5
headWord(P5, W11) Word W11 is the head word of P5
depType(W3,W7, Dependency graph contains an edge

CCOMP) of type CCOMP between W3 and W7

Table 1: Sample facts generated using the Stanford toolkit

2 presents our approach.

Raw Facts: For each sentence, the Stanford NLP
toolkit returns the tokenization, parse tree, depen-
dency graph and named entity information. We cre-
ate a word object for each token in the sentence and a
phrase object for each phrase in the parse tree. Table
1 presents a subset of the generated facts. Dependency
paths are considered to be important features for re-
lation extraction and hence we create a special predi-
cate to store the dependency path between every pair
of words. Since there can be many such paths, we cre-
ate the dependency path facts only if the path length
is smaller than 7. For TempEval, we also convert the
event and timex properties to relational facts such as
eventHasProperty(Event, Property, Value).

Domain Advice: We allow the provision of two
forms of domain knowledge:

(1) Specialized Features. We noticed that for most
of the valid event-timex pairs (i.e. having some rela-
tion), the event word is present in the dependency path
(DP) from the timex to the root of the dependency
graph (DG). Hence, if the DP goes up the tree and
then goes down i.e. if there is a ↙↘ in the DP, then
it is a strong signal that the event and timex are not
related. We added a predicate veeInDepPath(W1,W2)

which is true if neither W1 nor W2 is the ancestor of
the other word. For example, in Figure 3 we would
create a fact: veeInDepPath("be", "2002").

Typically, a timex t is related to the first verb that ap-



Figure 3:
Dependency
graph for a
sentence where
OVERLAP
relation exists
between “said”
and“2002”

pears in the DP from t to the root of the DG. However,
additional verbs in the path to the root can also be re-
lated to t if they are preceded by special dependency
tags (e.g. CCOMP). In order to learn such tags, we in-
cluded a predicate verbAlongDependencyPath(word,
word, verb, depType) to represent this feature. We
now let RDN-Boost discover which dependency types
could be present for valid relations. Figure 3 shows a
snippet of a DG. Although there is a verb in the DP
from “2002” to “said” since “recommending” is con-
nected by a CCOMP dependency type, “2002” applies
to “said” too.

(2) Expert Rules. For the TempEval task,
Yoshikawa et al. [4] designed rules to encode the
constraints for consistent ordering between events,
timexes and document times. Similar rules were
also used by the TRIPS/TRIOS system [5] for the
TempEval-2. We can use these rules as the initial
model for RDN-Boost. Each Horn clause is used as
a part of the initial model for the predicate that ap-
pears in the head of the clause. For example, a sam-
ple rule used by previous approaches was relE2T(e1, t,
“BEFORE”) ∧ relE2T(e2, t, “AFTER”) → relE2E(e1,
e2, “BEFORE”). This rule can be used as the initial
model for predicting relE2E. While relE2T represents
relations between events and timexes, relE2E repre-
sents relations between events.

4 Preliminary Results

We present the preliminary results of our approach on
task C of TempEval-2. We did not use any cross-task
rules in the initial model, since we learn a model for
a single task. When not using any domain-specific
features, RDN-Boost is able to achieve an accuracy of
0.56 on the test set. Including the domain-specific fea-
tures improved the testset accuracy of the system to
0.60. Most of the systems that competed in TempEval-
2 had an accuracy ranging between 0.62-0.65. We be-
lieve with better features and simultaneously using the
data from all the TempEval tasks to learn a joint model
would further improve the results.

5 Discussion and Future Work

Temporal relation-extraction is an important IE task
where SRL methods have shown promise. SRL allows
one to learn a joint model to find a globally consis-

tent relation-extraction system, but prior work used
hand-written rules. We propose an approach to learn
the rules for the SRL model, while taking advantage of
any domain-specific knowledge that is available. Our
preliminary results for structure learning for temporal
relation-extraction are promising. We expect the ac-
curacy to improve as we utilize the data from all the
TempEval tasks to learn a joint model.

We will work on using the other TempEval tasks such
as relation between events and document creation time
to perform joint inference across tasks. We can also
use the cross-task MLN rules as the initial model. We
plan to incorporate more features based on previous
work on relation extraction such as the words between
the event and timex. Previous approaches [4] have
also used the annotations from other tasks to increase
the training data for relation extraction tasks. For
example, if the annotations have marked event A oc-
curred before the document creation time and event B
occurred after the document time, we can add anno-
tations to mark event A occurred before event B.
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