
Lifted Online Training of Relational Models with
Stochastic Gradient Methods

Babak Ahmadi1, Kristian Kersting1,2,3, and Sriraam Natarajan3

1 Fraunhofer IAIS, Knowledge Discovery Department, Sankt Augustin, Germany
2 University of Bonn, Institute of Geodesy and Geoinformation, Bonn, Germany

3 Wake Forest University, School of Medicine, Winston-Salem, USA

Abstract. Lifted inference approaches have rendered large, previously
intractable probabilistic inference problems quickly solvable by employ-
ing symmetries to handle whole sets of indistinguishable random vari-
ables. Still, in many if not most situations training relational models
will not benefit from lifting: symmetries within models easily break since
variables become correlated by virtue of depending asymmetrically on
evidence. An appealing idea for such situations is to train and recom-
bine local models. This breaks long-range dependencies and allows to
exploit lifting within and across the local training tasks. Moreover, it
naturally paves the way for online training for relational models. Specifi-
cally, we develop the first lifted stochastic gradient optimization method
with gain vector adaptation, which processes each lifted piece one after
the other. On several datasets, the resulting optimizer converges to the
same quality solution over an order of magnitude faster, simply because
unlike batch training it starts optimizing long before having seen the
entire mega-example even once.

1 Introduction

Statistical relational models, see [1, 2] for overviews, have recently gained popu-
larity in the machine learning and AI communities since they provide powerful
formalisms to compactly represent complex real-world domains. Unfortunately,
computing the exact gradient in such models and hence learning the parameters
with exact maximum-likelihood training using current optimization methods like
conjugate gradient and limited-memory BFGS is often not feasible as it requires
computing marginal distributions of the entire underyling graphical model. Since
inference is posing major computational challenges one has to resort to approx-
imate learning.

One attractive avenue to scale relational learning is based on lifted message-
passing approaches [3, 4]. They have rendered large, previously intractable prob-
abilistic inference problems quickly (often approximately) solvable by employing
symmetries to handle whole sets of indistinguishable random variables. Still, in
most situations training relational models will not benefit from lifting:

(Limitation 1) Symmetries within a model easily break since variables
become correlated by virtue of depending asymmetrically on evidence.

Because of this, lifting produces new models that are often not far from propo-
sitionalized, therefore canceling the benefits of lifting for training. Moreover, in
relational learning we often face a single mega-example [5] only, a single large
set of inter-connected facts. Consequently, many if not all standard statistical
learning methods do not naturally carry over to the relational case. Consider
e.g. stochastic gradient methods. Similar to the perceptron method [6], stochas-
tic gradient descent algorithms update the weight vector in an online setting.
We essentially assume that the training examples are given one at a time. The
algorithms examine the current training example and then update the parame-
ter vector accordingly. They often scale sub-linearly with the amount of training
data, making them very attractive for large training data as targeted by statistial
relational learning. Empirically, they are even often found to be more resilient
to errors made when approximating the gradient. Unfortunately, stochastic gra-
dient methods do not naturally carry over to the relational cases:

(Limitation 2) Stochastic gradients coincide with batch gradients in the
relational case since there is only a single mega-example.

In this paper, we demonstrate how to overcome both limitations.

To do so, we shatter the full model into pieces. In each iteration, we train the
pieces independently and re-combine the learned parameters from each piece.
This overcomes limitation 1 by breaking long-range dependencies and allows
one — as we will show — to exploit lifting across the local training tasks. It also
paves the way for online training — as we will show — of relational models since
we can treat (mini-batches of) pieces as training examples and process one piece
after the other, hence overcoming limitation 2. Based on this insight, we develop
our main algorithmic contribution: the first lifted online training approach for
relational models using a stochastic gradient optimization method with gain
vector adaptation based on natural gradients. As our experimental evaluation
demonstrates, it already results in considerable efficiency gains, simply because
unlike batch training it starts optimizing long before having seen the entire
mega-example even once. However, we can do considerably better. The way we
shatter the full model into pieces greatly effects the learning quality. Important
influences between variables might get broken. To overcome this, we randomly
grow relational piece patterns that form trees. Our experimental results show
that tree pieces can balance well lifting and quality of the online training.

We proceed as follows. After touching upon related work, we recap Markov
logic networks, the probabilistic relational framework we focus on for illustration
purpose. Then, we develop the stochastic relational gradient framework. Before
concluding, we present our experimental evaluation.

2 Related Work

Our work aims at combining stochastic gradient methods for online training, re-
lational learning, and lifted inference hence is related to several lines of research.

Local training is well known for propositional graphical models. Besag [7]
presented a pseudolikelihood (PL) approach for training an Ising model with a
rectangular array of variables. PL, however, tends to introduce a bias and is not
necessarily a good approximation of the true likelihood with a smaller number
of samples. In the limit, however, the maximum pseudolikelihood coincides with
that of the true likelihood [8]. Hence, it is a very popular method for training
models such as Conditional Random Fields (CRF) where the normalization can
become intractable while PL requires normalizing over only one node. An al-
ternative approach is to decompose the factor graph into tractable subgraphs
(or pieces) that are trained independently [9], as also follows in the present
paper. This piecewise training can be understood as approximating the exact
likelihood using a propagation algorithm such as BP. Sutton and McCallum [9]
also combined the two ideas of PL and piecewise training to propose piecewise
pseudolikelihood (PWPL) which inspite of being a double approximation has
the benefit of being accurate like piecewise and scales well due to the use of
PL. Another intuitive approach is to compute approximate marginal distribu-
tions using a global propagation algorithm like BP, and simply substitute the
resulting beliefs into the exact ML gradient [10], which will result in approxi-
mate partial derivatives. Similarly, the beliefs can also be used by a sampling
method such as MCMC where the true marginals are approximated by running
an MCMC algorithm for a few iterations. Such an approach is called constructive
divergence [11] and is a popular method for training CRFs.

All the above methods were originally developed for propositional data while
real-world data is inherently noisy and relational. Statistical Relational Learning
(SRL) [1, 2] deals with uncertainty and relations among objects. The advantage
of relational models is that they can succinctly represent probabilistic depen-
dencies among the attributes of different related objects leading to a compact
representation of learned models. While relational models are very expressive,
learning them is a computationally intensive task. Recently, there have been
some advances in learning SRL models, especially in the case of Markov Logic
Networks [12–14]. Algorithms based on functional-gradient boosting [15] have
been developed for learning SRL models such as Relational Dependency Net-
works [16], and Markov Logic Networks [14]. Piecewise learning has also been
pursued already in SRL. For instance, the work by Richardson and Domin-
gos [17] used pseudolikelihood to approximate the joint distribution of MLNs
which is inspired from the local training methods mentioned above. Though all
these methods exhibit good empirical performance, they apply the closed-world
assumption, i.e., whatever is unobserved in the world is considered to be false.
They cannot easily deal with missing information. To do so, algorithms based
on classical EM [18] have been developed for ProbLog, CP-logic, PRISM, prob-
abilistic relational models, Bayesian logic programs [19–23], among others, as
well as gradient-based approaches for relational models with complex combining
rules [24, 25]. All these approaches, however, assume a batch learning setting;
they do not update the parameters until the entire data has been scanned. In
the presence of large amounts of data such as relational data, the above method

can be wasteful. Stochastic gradient methods as considered in the present pa-
per, on the other hand, are online and scale sub-linearly with the amount of
training data, making them very attractive for large data sets. Only Huynh
and Mooney [26] have recently studied online training of MLNs. Here, train-
ing was posed as an online max margin optimization problem and a gradient
for the dual was derived and solved using incremental-dual-ascent algorithms.
They, however, do not employ lifted inference for training and also make the
closed-world assumption.

3 Markov Logic Networks

We develop our lifted online training method within the framework of Markov
logic networks [17] but would like to note that it naturally carries over to other
relational frameworks. A Markov logic network (MLN) is defined by a set of
first-order formulas (or clauses) Fi with associated weights wi, i ∈ {1, . . . , k}.
Together with a set of constants C = {C1, C2, . . . , Cn} it can be grounded, i.e.
the free variables in the predicates of the formulas Fi are bound to be constants
in C, to define a Markov network. This ground Markov network contains a
binary node for each possible grounding of each predicate, and a feature for each
grounding fk of each formula. The joint probability distribution of an MLN is

given by P (X = x) = Z−1 exp
(∑|F |

i θini(x)
)

where for a given possible world

x, i.e. an assignment of all variables X, ni(x) is the number of times the ith
formula is evaluated true and Z is a normalization constant.

The standard parameter learning task for Markov Logic networks can be
formulated as follows. Given a set of training instances D = {D1, D2, . . . DM}
each constisting of an assignment to the variables in X the goal is to output a
parameter vector θ specifying a weight for each Fi ∈ F . Typically, however, a
single mega-example [5] is only given, a single large set of inter-connected facts.
For the sake of simplicity we will sometimes denote the mega-example simply
as E. To train the model, we can seek to maximize the log-likelihood function
logP (D | θ) given by `(θ,D) = 1

n

∑
D logPθ(X = xDn). The likelihood, however,

is computationally hard to obtain. A widely-used alternative is to maximize
the pesudo-log-likelihood instead i.e., logP ∗(X = x | θ) =

∑n
l=1 logPθ(X =

xl|MBx(Xl)) where MBx(Xl) is the state of the Markov blanket of Xl in the
data, i.e. the assignment of all variables neighboring Xl. In this paper, we resort
to likelihood maximization. No matter which objective function is used, one
typically runs a gradient-descent to train the model. That is, we start with some
initial parameters θ0 — typically initialized to be zero or at random around zero
— and update the parameter vector using θt+1 = θt − ηt · gt . Here gt denotes
the gradient of the likelihood function and is given by:

∂`(θ,D)/∂θk = nk(D)−MEx∼Pθ [nk(x)] (1)

This gradient expression has a particularly intuitive form: the gradient attempts
to make the feature counts in the empirical data equal to their expected counts

relative to the learned model. Note that, to compute the expected feature counts,
we must perform inference relative to the current model. This inference step
must be performed at every step of the gradient process. In the case of partially
observed data we cannot simply read-off the feature counts in the empirical
data and have to perform inference there as well. Consequently, there is a close
interaction between the training approach and the inference method employed
for training.

4 Lifted Online Training

Lifted Belief propagation (LBP) approaches [27, 4] have recently drawn a lot of
attention as they render large previously intractable models quickly solvable by
exploiting symmetries. Such symmetries are commonly found in first-order and
relational probabilistic models that combine aspects of first-order logic and prob-
ability. Instantiating all ground atoms from the formulae in such models induces
a standard graphical model with symmetric, repeated potential structures for all
grounding combinations. To exploit the symmetries, LBP approaches automat-
ically group nodes and potentials of the graphical model into supernodes and
superpotentials if they have identical computation trees (i.e., the tree-structured
unrolling of the graphical model computations rooted at the nodes). LBP then
runs a modified BP on this lifted (clustered) network simulating BP on the
propositional network obtaining the same results. When learning parameters of
a given model for a given set of observations, however, the presence of evidence
on the variables mostly destroys the symmetries. This makes lifted approaches
virtually of no use if the evidence is non symmetrical.

In the fully observed case, this may not be a major obstacle since we can
simply count how often a clause is true. Unfortunately, in many real-world do-
mains, the mega-example available is incomplete, i.e., the truth values of some
ground atoms may not be observed. For instance in medical domains, a patient
rarely gets all of the possible tests. In the presence of missing data, however,
the maximum likelihood estimate typically cannot be written in closed form. It
is a numerical optimization problem, and typically involves nonlinear, iterative
optimization and multiple calls to a relational inference engine as subroutine.

Since efficient lifted inference is troublesome in the presence of partial evi-
dence and most lifted approaches basically fall back to the ground variants we
need to seek a way to make the learning task tractable. An appealing idea for ef-
ficiently training large models is to divide the model into pieces that are trained
independently and to exploit symmetries across multiple pieces for lifting.

4.1 Piecewise Shattering

In piecewise training, we decompose the mega-example and its corresponding
factor graph into tractable but not necessarily disjoint subgraphs (or pieces)
P = {p1, . . . , pk} that are trained independently [28]. Intuitively, the pieces turn
the single mega-example into a set of many training examples and hence pave the

(a) Orig. model (b) Depth d = 0 (c) Depth d = 1 for f1 and f3 (d) Trees d = 1

Fig. 1. Schematic factor-graph depiction of the difference between likelihood (a), stan-
dard piecewise (b,c) and treewise training (d). Likelihood training considers the whole
mega-example, i.e., it performes inference on the complete factor graph induced over
the mega-example. Here, circles denote random variables, and boxes denote factors.
Piecewise training normalizes over one factor at a time (b) or higher-order, complete
neighbourhoods of a factor (c) taking longer dependcies into account, here shown fac-
tors f1 and f3. Treewise training (d) explores the spectrum between (b) and (c) in that
it also takes longer dependecies into account but does not consider complete higher
neighbourhoods; shown for tree features for factors f1 and f3. In doing so it balances
complexity and accuracy of inference.

way for online training. This is a reasonable idea since in many applications, the
local information in each factor alone is already enough to do well at predicting
the outputs. The parameters learned locally are then used to perform global
inference on the whole model.

More formally, at training time, each piece from P = {p1, . . . , pk} has a local
likelihood as if it were a separate graph, i.e., training example and the global
likelihood is estimated by the sum of its pieces: `(θ,D) =

∑
pi∈P `(θ|pi , D|pi) .

Here θ|pi denotes the parameter vector containing only the parameters appearing
in piece pi and D|pi the evidence for variables appearing in the current piece pi.
The standard piecewise decomposition breaks the model into a separate piece
for each factor. Intuitively, however, this discards dependencies of the model
parameters when we decompose the mega-example into pieces. Although the
piecewise model helps to significantly reduce the cost of training the way we
shatter the full model into pieces greatly effects the learning and lifting quality.
Strong influences between variables might get broken. Consequently, we next
propose a shattering approach that aims at keeping strong influence but still
features lifting.

4.2 Relational Tree Shattering

Assume that the mega-example has been turned into a single factor graph for
performing inference, cf. Fig. 1(a). A factor graph is a bipartite graph and
contains nodes representing random variables (denoted by circles) and factors
(squares). It explicitly represents the factorization of the graphical model and
there is an edge between a factor fk and a node i iff variable Xi appears in
fk. Now, starting from each factor, we extract networks of depth d rooted in
this factor. A local network of depth d = 0 thus corresponds to the standard

Algorithm 1: RelTreeFinding: Relational Treefinding

Input: Set of clauses F, a mega example E, depth d, and discount t ∈ [0, 1]
Output: Set of tree pieces T
// Tree-Pattern Finding

1 Initialize the dictionary of tree patterns to be empty, i.e., P = ∅ ;
2 for each clause Fi ∈ F do
3 Select a random ground instance fj of Fi in E;
4 Initialize tree pattern for Fi, i.e., Pi = {fj} ;

// perform random walk in a breath-first manner starting in fj
5 for fk = BFS.next() do
6 if current depth > d then break;
7 sample p uniformly from [0, 1] ;

8 if p > t|Pi| or fkwould induce a cycle then
9 skip branch rooted in fk in BFS ;

10 else
11 add fk to Pi;

12 Variablilize Pi and add it to dictonary P ;

// Construct tree-based pieces using the relational tree patterns

13 for each fj ∈ E do
14 Find Pk ∈ P matching fj , i.e., the tree pattern rooted in the clause Fk

corresponding to factor fj ;
15 Unify Pk with fj to obtain piece Tj and add Tj to T ;

16 return T ;

piecewise model as shown in Fig. 1(b), i.e. each factor is isolated in a separate
piece. Networks of depth d = 1 contain the factor in which it is rooted and
all of its direct neighbors, Fig. 1(c). Thus when we perform inference in such
local models using say belief propagation (BP) the messages in the root factor
of such a network resemble the BP messages in the global model up to the d-th
iteration. Longer range dependencies are neglected. A small value for d keeps the
pieces small and makes inference and hence training more efficient, while a large
d is more accurate. However, it has a major weakness since pieces of densely
connected networks may contain considerably large subnetworks, rendering the
standard piecewise learning procedure useless.

To overcome this, we now present a shattering approach that randomly grows
piece patterns forming trees. Formally, a tree is defined as a set of factors such
that for any two factors f1 and fn in the set, there exists one and only one
ordering of (a subset of) factors in the set f1, f2 , . . . fn such that fi and fi+1

share at least one variable, i.e. there are no loops. A tree of factors can then
be generalized into a tree pattern, i.e., conjunctions of relational ”clauses” by
variablizing their arguments. For every clause of the MLN we thus form a tree
by performing a random walk rooted in one ground instance of that clause. This
process can be viewed as a form of relational pathfinding [29].

The relational treefinding is summarized in Alg. 1. For a given set of Clauses
F and a mega example E the algorithm starts off by constructing a tree pattern

Fig. 2. Illustration of tree shattering: from the original model (left) we compute a
tree piece (right). Starting from factor f3, we randomly follow the tree-structured
”unrolling”’ of the graphical model rooted at f3. Green shows that the factor has been
included in the random walk while all red factors have been discarded. This results in
the tree pattern for f3 shown on the right hand side. A similar random walk generated
the other shown tree pattern for f1.

for each clause Fi (lines 1-12). Therefore, it first selects a random ground
instance fj (line 3) from where it grows the tree. Then it performs a breadth-
first traversal of the factors neighborhood and samples uniformly whether they
are added to the tree or not (line 7). If the sample p is larger than t|Pi|, where
t ∈ [0, 1] is a discount threshold and |Pi| the size of the current tree, or the
factor would induce a cycle, the factor and its whole branch are discarded and
skipped in the breadth-first traversal, otherwise it is added to the current tree
(lines 8-11). A small t basically keeps the size of the tree small while larger
values for t allow for more factors being included in the tree. The procedure is
carried out to a depth of at most d, and then stops growing the tree. This is
then generalized into a piece-pattern by variablizing its arguments (line 12).
All pieces are now constructed based on these piece patterns. For fj we apply
the pattern Pk of clause Fk which generated the factor (lines 13-15).

These tree-based pieces can balance efficiency and quality of the parameter
estimation well. Reconsider the example from Fig. 1. Fig. 2 shows the tree rooted
in the factor f3 where green colors show that the factors have been included
in the piece while all red factors have been discarded. The neighborhood of
factor f3 is traversed in a breadth-first manner, i.e., first its direct neighbors in
random order. Assume we have reached factor f4 first. We uniformly sample a
p ∈ [0, 1]. It was small enough, e.g. p = 0.3 < 0.91 so f4 is added to the tree.
For f2 we sample p = 0.85 > 0.92 so f2 and its branch are discarded. For f1
we sample p = 0.5 < 0.92 so f1 could be added. If we added f1, however, it
would together with f3 and f4 form a cycle, so its branch is discarded. For f5 we
sample p = 0.4 < 0.92 so it is added to the tree. Note that now we cannot add
any more edges without including cycles. In this way we can include longer range
dependencies in our pieces without sacrificing efficiency. The connectivity of a
piece and thereby its size can be controlled via the discount t. By forming tree
patterns and applying them to all factors we ensure that we have a potentially
high amount of lifting: Since we have decomposed the model into smaller pieces,
the influence of the evidence is limited to a shorter range and hence features
lifting the local models.

Moreover, we get an upper bound on the log partition function A(Θ). To see,
this, we first write the original parameter vector Θ as a mixture of parameter
vectors Θ(Tt) induced by the tractable subgraphs. For each edge in our mega-
example E, we add a non-spanning tree Tt which contains all the original vertices
but only the edges present in t. With each tree Tt we associate an exponential
parameter vector Θ(Tt). Let µ be a strictly positive probability distribution
over the tractable subgraphs, such that the original parameter vector Θ can be
written as a combination of per-tree-clause parameter vectors

Θ =
∑
F

∑
t

µt,FΘ(Tt) ,

where we have expressed parameter sharing among the ground instance of the
clauses. Now using Jensen’s inequality, we can state the following upper bound
to the log partition function:

A(Θ) = A(
∑
F

∑
t

µt,FΘ(Tt)) = A(
∑
t

µtΘ(Tt)) ≤
∑
t

µtA(Θ(Tt)) (2)

with µt =
∑
F µt,F . Since the µt,F are convex, the µt are convex, too, and

applying Jensen’s inequality is safe. So we can follow Sutton and McCallum’s [9]
arguments. Namely, for tractable subgraphs and a tractable number of models
the right-hand side of (2) can be computed efficiently. Otherwise it forms an
optimization problem, which according to [30] can be interpreted as free energy
and depends on a set of marginals and edge appearance probabilities, in our
case the probability that an edge appears in a tree, i.e. is visited in the random
walk. Also, it is easy to show that pieces of depth 0 are an upper bound to this
bound since, we can apply Jensen’s inequality again when breaking the trees
into independent pathes from the root to the leaves.

Now, we show how to turn this upper bound into a lifted online training for
relational models.

4.3 Lifted Stochastic Meta-Descent

Stochastic gradient descent algorithms update the weight vector in an online
setting. We essentially assume that the pieces are given one at a time. The
algorithms examine the current piece and then update the parameter vector
accordingly. They often scale sub-linearly with the amount of training data,
making them very attractive for large training data as targeted by statistial
relational learning. To reduce variance, we may form mini-batches consisting
of several pieces on which we learn the parameters locally. In contrast to the
propositional case, however, mini-batches have another important advantage:
we can now make use of the symmetries within and across pieces for lifting.

More formally, the gradient in (1) is approximated by∑
i

1

#i

∂`(θ,Di)

∂θk
, (3)

where the mega-example D is partitioned into pieces respectively mini-batches of
pieces Di. Here #i denotes a per-clause normalization that counts how often each
clause appears in mini-batch Di. This is a major difference to the propositional
case and avoids “double counting” parameters. For example, let gi be a gradient
over the the mini-batch Di. For a single piece we count how often a ground
instance of each clause appears in the piece Di. If Di consists of more than
one piece we add the count vector of all pieces together. For example, if for a
model with 4 clauses the single piece mini-batch Di has counts (1, 3, 0, 2) the
gradient is normalized by the respective counts. If the mini-batch, however, has
an additional piece with counts (0, 2, 1, 0) we normalize by the sum, i.e. (1, 5, 1, 2).

Since the gradient involves inference per batch only, inference is again feasible
and more importantly liftable as we will show in the experimental section. Con-
sequently, we can scale to problem instances traditional relational methods can
not easily handle. However, the asymptotic convergence of first-order stochas-
tic gradients to the optimum can often be painfully slow if e.g. the step-size is
too small. One is tempted to just employ standard advanced gradient techniques
such as L-BFGS. Unfortunately most advanced gradient methods do not tolerate
the sampling noise inherent in stochastic approximation: it collapses conjugate
search directions [31] and confuses the line searches that both conjugate gra-
dient and quasi-Newton methods depend upon. Gain adaptation methods like
Stochastic Meta-Descent (SMD) overcome these limitations by using second-
order information to adapt a per-parameter step size [32]. However, while SMD
is very efficient in Euclidian spaces, Amari [33] showed that the parameter space
is actually a Riemannian space of the metric C, the covariance of the gradients.
Consequently, the ordinary gradient does not give the steepest direction of the
target function. The steepest direction is instead given by the natural gradient,
that is by C−1g. Intuitively, the natural gradient is more conservative and does
not allow large variances. If the gradients highly disagree in one direction, one
should not take the step. Thus, whenever we have computed a new gradient gt
we integrate its information and update the covariance at time step t by the
following expression:

Ct = γCt−1 + gtg
T
t (4)

where C0 = 0, and γ is a parameter that controls how much older gradients are
discounted. Now, let each parameter θk have its own step size ηk. We update
the parameter b

θt+1 = θt − ηt · gt (5)

The gain vector ηt serves as a diagonal conditioner and is simultaneously adapted
via a multiplicative update with the meta-gain µ:

ηt+1 = ηt · exp(−µgt+1 · vt+1) ≈ ηt ·max(
1

2
, 1− µgt+1 · vt+1) (6)

where v ∈ Θ characterizes the long-term dependence of the system parameters
on gain history over a time scale governed by the decay factor 0 ≤ λ ≤ 1 and is
iteratively updated by

vt+1 = λvt − η · (gt + λC−1vt) . (7)

Algorithm 2: Lifted Online Training of Relational Models

Input: Markov Logic Network M, mega-example E, decay factors t, γ, and λ
Output: Parameter vector θ
// Generate mini-batches

1 Generate set of tree pieces P using RelTreeFinding;
2 Randomly form mini-batches B = {B1, . . . , Bm} each consisting of l pieces;

// Peform lifted stochastic meta-descent

3 Initialize θ and v0 with zeros and the covariance matrix C to the zero matrix;
4 while not converged do
5 Shuffle mini-batches B randomly;
6 for i = 1, 2, . . . ,m do
7 Compute gradient g for Bi using lifted belief propagation;
8 Update covariance matrix C using (4) or some low-rank variant;
9 Update parameter vector θ using (5) and the involved equations;

10 return θ;

To ensure a low computational complexity and a good stability of the com-
putations, one can maintain a low rank approximation of C, see [34] for more
details. Using per-parameter step-sizes considerably accelerates the convergence
of stochastic natural gradient descent.

Putting everything together, we arrive at the lifted online learning for re-
lational models as summarized in Alg. 2. That is, we form mini-batches of
tree pieces (lines 1-2). After initialization (lines 3-4), we then perform lifted
stochastic meta-descent (lines 5-9). That is, we randomly select a mini-batch,
compute its gradient using lifted inference, and update the parameter vector.
Note that pieces and mini-batches can also be computed on the fly and thus its
construction be interweaved with the parameter update. We iterate these steps
until convergence, e.g. by considering the change of the parameter vector in the
last l steps. If the change is small enough, we consider it as evidence of conver-
gence. To simplify things, we may also simply fix the number of times we cycle
through all mini-batches. This also allows to compare different methods.

5 Experimental Evaluation

Our intention here is to investigate the following questions: (Q1) Can we effi-
ciently train relational models using stochastic gradients? (Q2) Are there sym-
metries within mini-batches that result in lifting? (Q3) Can relational treefind-
ing produce pieces that balance accuracy and lifting well? (Q4) Is it even possible
to achieve one-pass relational training?

To this aim, we implemented lifted online learning for relational models
in Python. As a batch learning reference, we used scaled conjugate gradient
(SCG) [35]. SCG chooses the search direction and the step size by using in-
formation from the second order approximation. Inference that is needed as
a subroutine for the learning methods was carried out by lifted belief prop-
agation (LBP) [4, 36]. For evaluation, we computed the conditional marginal

10 20
Passes over the data

−160

−120

−80
C

M
L

L

SCG
SMD

1 5 10 50 100200 500
Size of mini-batches

10−2

10−1

100

L
if
ti
n
g
R
a
ti
o
(G

ro
u
n
d
/L
if
te
d
)

SCG

10 100 500 1000
Size of mini-batches

10−2

10−1

100

L
if
ti
n
g
R
a
ti
o
(G
ro
u
n
d
/L
if
te
d
)

Pieces (d=0)
Tree pieces (d=1)

SCG

Fig. 3. ”Passes over mega-example” vs. Test-CMLL for the Friends-and-Smokers (left)
(the higher the better). lifted online learning has already learned before seeing the mega
example even once (black vertical line). (center) Benefit of local training for lifting.
Lifting ratio for varying mini-batch size versus the full batch model on the Friends-
and-Smokers MLN. Clearly for a batch size of 1 there is no lifting but with larger
mini-batch sizes there is more potential to lift the pieces within each batch; the size
can be an order of magnitude smaller. (right) Lifting ratio for standard pieces vs. tree
pieces on the Voting MLN. Due to rejoining of pieces, additional symmetries are broken
and the lifting potential is smaller. However, the sizes of the models per mini-batch
still gradually decrease with larger mini-batch sizes. (Best viewed in color)

log-likelihood (CMLL) [10], which is defined with respect to marginal probabil-
ities. More precisely, we first divide the variables into two groups: Xhidden and
Xobserved. Then, we compute CMLL(E) =

∑
X∈Xhidden

logP (X|Xobserved) for
the given mega-example. To stabilize the metric, we divided the variables into
four groups and calculated the average CMLL when observing only one group
and hiding the rest. All experiments were conducted on a single machine with
2.4 GHz and 64 GB of RAM.

(Q1, Q2) Friends-and-Smokers MLN: In our first experiment we learned
the parameters for the “Friends-and-Smokers” MLN [27], which basically defines
rules about the smoking behaviour of people, how the friendship of two people
influences whether a person smokes or not, and that a person is more likely
to get cancer if he smokes. We enriched the network by adding two clauses: if
someone is stressed he is more likely to smoke and people having cancer should
get medical treatment. For a given set of parameters we sampled 5 dataset from
the joint distribution of the MLN with 10 persons. For each dataset we learned
the parameters on this dataset and evaluated on the other four. The ground
network of this MLN contains 380 factors and 140 variables. The batchsize was
10 and we used a stepsize of 0.2. Fig. 3(left) shows the CMLL averaged over all
of the 5 folds. We ran the lifted piecewiese learning with a batchsize of 10 and a
step size of 0.2. Other parameters for SMD were chosen to be λ = .99, µ = 0.1,
and γ the discount for older gradients as 0.9.

As one can see, the lifted SMD has a steep learning curve and has already
learned the parameters before seeing the mega example even once (indicated
by the black vertical line. Note that we learned the models without stopping
criterion and for a fixed number of passes over the data thus the CMLL on the

10−2 100 102
Passes over the data

−2000

−1000

0

C
M
L
L

Tree SMD
SMD
SCG

0 50 100 150
time (seconds)

−40000

−20000

0

C
M
L
L

Tree SMD

SMD

Fig. 4. Experimental results. From left to right, ”passes over mega-example” vs. Test-
CMLL for the CORA and ”number of batches” vs. Test-CMLL for the Wumpus MLNs
(the higher the better). The last graph on the right-hand-side shows the runtime vs.
CMLL on the Wumpus MLN. As one can see, lifted online learning has already con-
verged before seeing the mega example even once (black vertical line). For the Wumpus
MLN, SCG did not converge within 72 hours. (Best viewed in color)

test data can decrease. SCG on the other hand requires four passes over the
entire training data to have a similar result in terms of CMLL. Thus Q1 can
be answered affirmatively. Moreover, as Fig 3(center) shows, piecewise learning
greatly increases the lifting compared to batch learning, which essentially does
not feature lifting at all. Thus, Q2 can be answered affirmatively.

(Q2,Q3) Voting MLN: To investigate whether tree pieces although more
complex can still yield lifting, we considered the Voting MLN from the Alchemy
repository. The network contains 3230 factors and 3230 variables. Note that
it is a propositional Naive Bayes (NB) model. Hence, depth 0 pieces will yield
greater lifting but hamper information flow among attributes if the class variable
is unobserved. Tree pieces intuitively couple depth 0 hence will indeed yield
lower lifting ratios. However, with larger mini-batches they should still yield
higher lifting than the batch case. This is confirmed by the experimental results
summarized in Fig 3(right). Thus, Q3 can be answered affirmatively.

(Q3,Q4) CORA Entity Resolution MLN: In our second experiment we
learned the parameters for the Cora entity resolution MLN, one of the standard
datasets for relational learning. In the current paper, however, it is used in a non-
standard, more challenging setting. For a set of bibliographies the Cora MLN has
facts, e.g., about word appearances in the titles and in author names, the venue
a paper appeared in, its title, etc. The task is now to infer whether two entries
in the bibliography denote the same paper (predicate samePaper), two venues
are (sameVenue), two titles are the same (sameTitle), and whether two authors
are the same (sameAuthor). We sampled 20 bibliographies and extracted all
facts corresponding to these bibliography entries. We constructed five folds then
trained on four folds and tested on the fifth. We employed a transductive learning
setting for this task. The MLN was parsed with all facts for the bibliographies
from the five folds, i.e., the queries were hidden for the test fold. The query
consisted of all four predicates (sameAuthor,samePaper,sameBib, sameVenue).
The resulting ground network consisted of 36, 390 factors and 11, 181 variables.
We learnt the parameters using SCG, lifted stochastic meta-descent with stan-
dard pieces as well as pieces using relational treefinding with a threshold t of

0.9. The trees consisted of around ten factors on average. So we updated with
a batchsize of 100 for the trees and 1000 for standard pieces with a stepsize of
0.05. Furthermore, other parameters were chosen to be λ = .99, µ = 0.9, and
γ = 0.9. Fig. 4(left) shows the averaged learning results for this entity resolution
task. Again, online training does not need to see the whole mega-example; it has
learned long before finishing one pass over the entire data. Thus, (Q4) can be
answered affirmatively.

Moreover, Fig. 4 also shows that by building tree pieces one can considerably
speed-up the learning process. They convey a lot of additional information such
that one obtains a better solution with a smaller amount of data. This is due to
the fact that the Cora dataset contains a lot of strong dependencies which are
all broken if we form one piece per factor. The trees on the other hand preserve
parts of the local structure which significantly helps during learning. Thus, (Q3)
can be answered affirmatively.

(Q3,Q4) Lifted Imitation Learning in the Wumpus Domain: To fur-
ther investigate (Q3) and (Q4), we considered imitation learning in a relational
domain for a Partially Observed Markov Decision Process (POMDP). We cre-
ated a simple version of the Wumpus task where the location of Wumpus is
partially observed. We used a 5×5 grid with a Wumpus placed in a random lo-
cation in every training trajectory. The Wumpus is always surrounded by stench
on all four sides. We do not have any pits or breezes in our task. The agent can
perform 8 possible actions: 4 move actions in each direction and 4 shoot actions
in each direction. The agent’s task is to move to a cell so that he can fire an
arrow to kill the Wumpus. The Wumpus is not observed in all the trajectories
although the stench is always observed. Trajectories were created by real human
users who play the game. The resulting network contains 182400 factors and
4469 variables. We updated with a batchsize of 200 for the trees and 2000 for
standard pieces with a stepsize of 0.05. As for the cora dataset used λ = .99,
µ = 0.9, and γ = 0.9.

Figure 4 shows the result on this dataset for lifted SMD with standard pieces
as well as pieces using relational treefinding with a threshold t of 0.9. For this
task, SCG did not converge within 72 hours. Note that this particular network
has a complex structure with lots of edges and large clauses. This makes inference
on the global model intractable. Fig. 4 (center) shows the learning curve for the
total number of batches seen as well as the total time needed for one pass over
the data (right). As one can see, tree pieces actually yield faster convergence,
again long before having seen the dataset even once. Thus, (Q3) and (Q4) can
be answered affirmatively.

Taking all experimental results together, all questions Q1-Q4 can be clearly
answered affirmatively.

6 Conclusions

In this paper, we have introduced the first lifted online training method for rela-
tional models. We employed the intuitively appealing idea of separately training

pieces of the full model and combining the results in iteration and turned it
into an online stochastic gradient method that processes one lifted piece after
the other. We showed that this approach can be justified as maximizing a loose
bound on the log likelihood and that it converges to the same quality solution
over an order of magnitude faster, simply because unlike batch training it starts
optimizing long before having seen the entire mega-example even once.

The stochastic relational gradient framework developed in the present paper
puts many interesting research goals into reach. For instance, one should tackle
one-pass relational learning by investigating different ways of gain adaption and
scheduling of pieces for updates. One should also investigate budget constraints
on both the number of examples and the computation time per iteration. In
general, relational problems can easily involve models with millions of random
variables. At such massive scales, parallel and distributed algorithms for training
are essential to achieving reasonable performance.

Acknowledgements: The authors thank the reviewers for their helpful com-

ments. BA and KK were supported by the Fraunhofer ATTRACT fellowship STREAM

and by the European Commission under contract number FP7-248258-First-MM. SN

gratefully acknowledges the support of the DARPA Machine Reading Program under

AFRL prime contract no. FA8750-09-C-0181. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the view of DARPA, AFRL, or the US government.

References

1. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT
Press (2007)

2. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Induc-
tive Logic Programming. Lecture Notes in Computer Science. Springer (2008)

3. Singla, P., Domingos, P.: Lifted First-Order Belief Propagation. In: AAAI. (2008)
4. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI,

Montreal, Canada (2009)
5. Mihalkova, L., Huynh, T., Mooney, R.: Mapping and revising markov logic net-

works for transfer learning. In: AAAI. (2007) 608–614
6. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan (1962)
7. Besag, J.: Statistical Analysis of Non-Lattice Data. Journal of the Royal Statistical

Society. Series D (The Statistician) 24(3) (1975) 179–195
8. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods.

Springer-Verlag (1995)
9. C.Sutton, Mccallum, A.: Piecewise training for structured prediction. Machine

Learning 77(2–3) (2009) 165–194
10. Lee, S.I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks

using L1-regularization. In: NIPS. (2007)
11. Hinton, G.: Training products of experts by minimizing contrastive divergence.

Neural Computation 14 (2002)
12. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph

lifting. In: ICML. (2009)

13. Kok, S., Domingos, P.: Learning Markov logic networks using structural motifs.
In: ICML. (2010)

14. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks
via functional gradient boosting. In: ICDM. (2011)

15. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Annals of Statistics (2001) 1189–1232

16. Natarajan, S., Khot, T., Kersting, K., Guttmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning (2012)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2)
(2006) 107–136

18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B.39 (1977)

19. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res. (JAIR) 15 (2001) 391–454

20. Kersting, K., De Raedt, L.: Adaptive bayesian logic programs. In: ILP. (2001)
21. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of

link structure. Journal of Machine Learning Research 3 (2002) 679–707
22. Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: Efficient

inference and applications. Machine Learning 82(2) (2011) 239–272
23. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic

logic programs from interpretations. In: ECML-PKDD. (2011) 581–596
24. Natarajan, S., Tadepalli, P., Dietterich, T.G., Fern, A.: Learning first-order prob-

abilistic models with combining rules. Annals of Mathematics and AI (2009)
25. Jaeger, M.: Parameter learning for Relational Bayesian networks. In: ICML. (2007)
26. Huynh, T., Mooney, R.: Online max-margin weight learning for markov logic

networks. In: SDM. (2011)
27. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: AAAI. (2008)
28. Sutton, C., McCallum, A.: Piecewise training for structured prediction. Machine

Learning 77(2–3) (2009) 165–194
29. Richards, B., Mooney, R.: Learning relations by pathfinding. In: AAAI. (1992)
30. Wainwright, M., Jaakkola, T., Willsky, A.: A new class of upper bounds on the

log partition function. In: UAI. (2002) 536–543
31. Schraudolph, N., Graepel, T.: Combining conjugate direction methods with

stochastic approximation of gradients. In: AISTATS. (2003) 7–13
32. Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accel-

erated training of conditional random fields with stochastic gradient methods. In:
In ICML. (2006) 969–976

33. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10
(1998) 251–276

34. Le Roux, N., Manzagol, P.A., Bengio, Y.: Topmoumoute online natural gradient
algorithm. In: NIPS. (2007)

35. Mller, M.: A scaled conjugate gradient algorithm for fast supervised learning.
NEURAL NETWORKS 6(4) (1993) 525–533

36. Ahmadi, B., Kersting, K., Sanner, S.: Multi-Evidence Lifted Message Passing, with
Application to PageRank and the Kalman Filter. In: IJCAI. (2011)

