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Abstract

Coronary heart disease (CHD) is a major cause of death
worldwide. In the U.S. CHD is responsible for approx-
imated 1 in every 6 deaths with a coronary event occur-
ring every 25 seconds and about 1 death every minute
based on data current to 2007. Although a multitude of
cardiovascular risks factors have been identified, CHD
actually reflects complex interactions of these factors
over time. Today’s datasets from longitudinal studies
offer great promise to uncover these interactions but
also pose enormous analytical problems due to typi-
cally large amount of both discrete and continuous mea-
surements and risk factors with potential long-range
interactions over time. Our investigation demonstrates
that a statistical relational analysis of longitudinal data
can easily uncover complex interactions of risks factors
and actually predict future coronary artery calcification
(CAC) levels — an indicator of the risk of CHD present
subclinically in an individual — significantly better than
traditional non-relational approaches. The uncovered
long-range interactions between risk factors conform to
existing clinical knowledge and are successful in identi-
fying risk factors at the early adult stage. This may con-
tribute to monitoring young adults via smartphones and
to designing patient-specific treatments in young adults
to mitigate their risk later.

Introduction
Heart disease and stroke – cardiovascular diseases, generally
– encumber society with enormous costs. According to the
World Heart Federation 1, cardiovascular disease costs the
European Union e 169 billion in 2003 and the USA about
$400 billion in direct and indirect annual costs.

One major cardiovascular disease is coronary heart dis-
ease (CHD). It is reported to be a major cause of morbidity
and death in adults through heart attacks or acute myocar-
dial infarctions (AMI). CHD is a condition which includes
plaque build up inside the coronary arteries, i.e., atheroscle-
rosis. Atherosclerosis is a disease process that begins in
childhood, eventually resulting in clinical events later in life.
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economic-impact/ and references in there.

The factors that determine development and progression of
CHD are in large part established; however, the causes are
very closely related with risk factors present in youth. Early
detection of risks will help in designing effective treatments
targeted at youth in order to prevent cardiovascular events
in adulthood and to dramatically reduce the costs associated
with cardiovascaular dieases.

Our major contribution is to demonstrate the impact of AI
and machine learning on CHD research and the potential for
developing treatment plans. We show that relationships be-
tween the measured risk factors, the development of CHD,
and overall plaque burden can be automatically extracted
and understood. As the cohort ages and sufficient clinical
events occur, this work will allow us to apply these meth-
ods to clinical events such as AMI and heart failure. Specifi-
cally, we propose to use the longitudinal data collected from
the Coronary Artery Risk Developments in Young Adults
(CARDIA)2 study over different years to automatically es-
timate models using machine learning techniques for pre-
dicting the Coronary Artery Calcification (CAC) amounts,
a measure of subclinical CHD, at year 20 given the mea-
surements from the previous years. This longitudinal study
began in 1985 − 86 and measured risk factors in differ-
ent years (2,5,7,10,15,20) respectively. Several vital factors
such as body mass index (bmi), cholesterol-levels, blood
pressure and exercise level are measured along with fam-
ily history, medical history, nutrient intake, obesity ques-
tions, pyschosocial, pulmonary function etc. Using the pre-
dictions of the CAC levels we can predict cardiovascular
events such as heart attacks. This in turn allows us to enable
pro-active treatment planning for the high-risk patients i.e.,
identify young adult patients who are potentially at high-risk
to cardiovascular events and design patient-specific treat-
ments that would mitigate the risks. And this could even be
ported to one people’s laptops and/or smartphones, illustrat-
ing that AI could indeed empower people to take control of
their CV health.

Specifically, we use Statistical Relational Learning
(SRL) (Getoor and Taskar 2007) algorithms for predicting
CAC-levels in year 20 (corresponding to year 2005 when
the patients were between 38 and 50 years old) given the
measurements from all the previous years. SRL approaches,

2http://www.cardia.dopm.uab.edu/



unlike what is traditionally done in statistical learning, seek
to avoid explicit state enumeration as, through a symbolic
representation of states. The advantage of these models is
that they can succinctly represent probabilistic dependen-
cies among the attributes of different related objects lead-
ing to a compact representation of learned models that al-
low for sharing of parameters between similar objects. Given
that the CARDIA data is highly relational (multiple mea-
surements are performed over examinations for each partic-
ipant) and temporal, we use SRL methods to learn to predict
CAC-levels. We use a de-identified version of the data set
for methodological development.

More precisely, we use two kinds of SRL algorithms for
this task – Relational Probability Trees (RPT) (Neville et
al. 2003) and a more recently popular Relational Functional
Gradient Boosting (RFGB) (Natarajan et al. 2012) approach.
RPTs upgrade the attribute-value representation used within
classical classification trees. The RFGB approach, on the
other hand, involves learning a set of regression trees, each
of which represents a potential function. The functional gra-
dient approach has been found to give state of the art results
in many relational problems and we employ the same for
CAC prediction. We use a sub-set of measurements from the
CARDIA data set and predict the CAC-levels. We compared
the SRL algorithms against propositional machine learning
algorithms and demonstrated the superiority of the SRL al-
gorithms. The learned models were also verified by our med-
ical expert and the results conform to known medical risks.
The results also provided a few insights about the relation-
ships between risk factors and age of the individual. Identi-
fying risk factors such as cholesterol level in young adult-
hood has potential to enable both the physician and the sub-
ject to devise a personalized plan to optimize it. Keeping
track of these risk factors in young adulthood will prevent
serious cardio-vascular events in their late adulthood.

In summary, we first present a very important real-world
problem: that of predicting cardio-vascular risks in adults
given their risk factors early in the adult stage. This problem
has a significant potential impact in the design of preventive
personalized treatments for adults. Second, this problem is
addressed using ML techniques. These techniques were de-
veloped recently within the SRL community and we adapt
these algorithms to our particular task and present the al-
gorithms from the perspective of this task. Third, the intro-
duction of the application to the AI community is impor-
tant. Fourth, long-range interactions between the risk factors
are mined effectively in our approach. For example, being a
smoker in young adulthood and having a low hdl-cholestrol
level in mid-adulthood could have a negative impact in the
older adults. Such dependencies are extracted by using time
as an explicit parameter in our models. Finally, the proposed
approaches are compared against state-of-the-art machine
learning techniques on the task of predicting CAC-levels in
patients in their adulthood.

Methodology
Before explaining how to adapt the CARDIA data to the
relational setting, we will justify and detail our relational
methodology.

The Need for Relational Models
Are relational models really beneficial? Could we also use
propositional models? As we show, relational approaches
are able to comprehensively outperform standard machine
learning and data mining approaches. Beyond this, there are
several justifications for adopting statistical relational anal-
yses. First, the data consists of several diverse features (e.g.,
demographics, psychosocial, family history, dietary habits)
that interact with each other in many complex ways mak-
ing it relational. Without extensive feature engineering, it is
difficult — if not impossible — to apply propositional ap-
proaches to such structured domains. Second, the data was
collected as part of a longitudinal study, i.e., over many dif-
ferent time periods such as 0, 5, 10, years etc., making it tem-
poral. Third, like most data sets from biomedical applica-
tions, it contains missing values i.e., all data are not collected
for all individuals. Fourth, the nature of SRL algorithms
allow for more complex interactions between features. Fi-
nally, the learned models can be generalized across differ-
ent sub-groups of participants and across different studies
themselves. And, the relational models are very easily inter-
pretable and hence enable the physician and policy-maker
to identify treatable risk factors and plan preventative treat-
ments

While SRL methods seem appropriate, this data poses a
few challenges for SRL, to necessitate some preprocessing.

(1) Since the data is longitudinal, there are multiple mea-
surements of many of the risk factors over different years
of study. Hence time has to be incorporated into the model.
To do so, the features are treated as fluents with time be-
ing the last argument. For instance,weight(X,W, T ) would
refer to person X having weight W at time T . (2) CAC-
levels of the participants are negligible (and often actually
unobserved) in early years. This prevents us from using stan-
dard Dynamic Bayesian Network or HMMs; the values are
nearly always zero in the initial years, being non-zero only in
10% at year 15 and 18% at year 20. (3) The input data con-
sists of mainly continuous values. SRL methods use pred-
icate logic where attributes are binary. In the case of fea-
tures such as cholesterol level, ldl, bmi, we discretized them
into bins based on domain knowledge. This is one of the key
lessons learned: using the domain expert’s knowledge (for
discretization in our case) makes it possible to learn very
highly predictive models in real problems. (4) The cohort de-
creased over the years. There were a number of participants
who did not appear for a certain number of years and re-
turned for others. We did not try to normalize the data set by
removing all the missing participants or replacing them with
the most commonly observed value. Instead, we allowed
the values to be missing. The only case where we dropped
the participants from the data base was when they were not
present in year 20 where we predict the CAC-levels. This
is to say that we are not considering the problem to be a
semi-supervised learning problem but treat it as a strictly su-
pervised learning one. (5) Recall the goal of the study is to
identify the effect of the factors in early adulthood on cardio-
vascular risks in middle-aged adults. The algorithm should
be allowed to search through all the risk factors in all the
years for predicting CAC-levels. This implies that the data



must not be altered or tailored in any form. In this work, we
did not make any modifications to the data except for the dis-
cretizations mentioned earlier. As we show, our methods are
very successful in identifying long-range correlations. One
of the biggest lessons learned from this work is that risk fac-
tors between the ages of 18 through 30 are very significant
for CAC-level prediction at age 38 to 50.

However, which SRL approach should we use?

Relational Gradient Boosting
One of the most important challenges in SRL is learning the
structure of the models, i.e., the weighted relational rules.
This problem has received much attention lately. Most ap-
proaches follow a traditional greedy hill-climbing search:
first obtain the candidate rules/clauses, score them, i.e., learn
the weights, and select the best candidate. The temporal na-
ture of our task at hand makes it difficult to use these ap-
proaches. Therefore, we use a boosting approach based on
functional gradients recently proposed that learns the struc-
ture and parameters simultaneously (Natarajan et al. 2012).
It was proven successful in several classical SRL domains
and achieves state-of-the art performances. Also, it easily
— as we will show — accounts for the temporal aspects of
CAC-level prediction.

Functional gradient methods have been used previously
to train conditional random fields (CRF) Dietterich et
al. (2004) and their relational extensions (TILDE-CRF)
(Gutmann and Kersting 2006). Assume that the training
examples are of the form (xi, yi) for i = 1, ..., N and
yi ∈ {1, ...,K}. We use x to denote the vector of features.
The goal is to fit a model P (y|x) ∝ eψ(y,x). The potentials
are trained using Friedman’s (2001) gradient-tree boosting
algorithm where the potential functions are represented by
sums of regression trees that are grown stage-wise. More
formally, functional gradient ascent starts with an initial po-
tential ψ0 and iteratively adds gradients ∆i.After m itera-
tions, the potential is given by ψm = ψ0 + ∆1 + ... + ∆m.
Here, ∆m is the functional gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (1)

where ηm is the learning rate. Dietterich et al. suggested
evaluating the gradient at every position in every training
example and fitting a regression tree to these derived exam-
ples i.e., fit a regression tree hm on the training examples
[(xi, yi),∆m(yi;xi)].

Let us denote the CAC-level as y and for ease of expla-
nation assume that it is binary valued (i.e., present vs ab-
sent). Let us denote all the other variables measured over
the different years as x. Our aim is to learn P (y|x) where,
P (y|x) = eψ(y;x)/

∑
y e

ψ(y;x) Note that in the functional
gradient presented in Equation 1, the expectation Ex,y[..]
cannot be computed as the joint distribution P (x,y) is un-
known. Instead of computing the functional gradients over
the potential function, they are instead computed for each
training example i given as 〈xi, yi〉. Now this set of local
gradients form a set of training examples for the gradient at
stage m. The main idea in the gradient-tree boosting is to
fit a regression-tree on the training examples at each gradi-

ent step. We replace the propositional regression trees with
relational regression trees.

The functional gradient with respect to ψ(yi = 1;xi) of
the likelihood for each example 〈yi,xi〉 can be shown to be:
∂ logP (yi;xi)
∂ψ(yi=1;xi)

= I(yi = 1;xi) - P (yi = 1;xi), where I is the
indicator function that is 1 if yi = 1 and 0 otherwise. The
expression is simply the adjustment required to match the
predicted probability with the true label of the example. If
the example is positive (i.e., if the participant has significant
CAC-level in year 20) and the predicted probability is less
than 1, this gradient is positive indicating that the predicted
probability should move towards 1. Conversely, if the exam-
ple is negative and the predicted probability is greater than
0, the gradient is negative driving the value the other way.

Now, to fit the gradient function for every training exam-
ple, we use Relational Regression Trees (RRTs) (Blockeel
and Raedt 1998).At a fairly high level, the learning of RRT
proceeds as follows: The learning algorithm starts with an
empty tree and repeatedly searches for the best test for a
node according to some splitting criterion such as weighted
variance. Next, the examples in the node are split into suc-
cess and failure according to the test. For each split, the pro-
cedure is recursively applied further obtaining subtrees for
the splits. We use weighted variance on the examples as the
test criterion. In our method, we use a small depth limit (of
at most 3) to terminate the search. In the leaves, the average
regression values are computed.

The key idea underlying the present work is to represent
the distribution over CAC-levels as a set of RRTs on the fea-
tures. When learning to predict the CAC-levels in year 20,
we use the data collected from all the previous years. We
ignore the CAC-levels that are present for some individu-
als at year 15 since we are interested in planning preventive
treatments in early adulthood based on other risk factors.
We bear in mind that CAC rarely regresses from present to
absent or from a higher level to a lower level. These trees
are learned such that at each iteration the new set of RRTs
aim to maximize the likelihood of the distributions w.r.t ψ.
When computing P (cac(X)|f(X)) for a particular patient
X , given the feature set f , each branch in each tree is con-
sidered to determine the branches that are satisfied for that
particular grounding (x) and their corresponding regression
values are added to the potential ψ.

To investigate the usefulness of other relational learners,
we also considered Relational Probability Trees (Neville et
al. 2003). We modified the RPT learning algorithm to learn
a regression tree similar to TILDE to predict positive exam-
ples and turn the regression values in the leaves into proba-
bilities by exponentiating the regression value and normal-
izing them. We modified TILDE to automatically include
aggregate functions such as count, mode, max, mean etc.
while searching for the next node to add to the tree. Also,
the regression tree learner can use conjunctions of predicates
in the inner nodes as against a single test by the traditional
RPT learner. This modification has been shown to have bet-
ter performance than RPTs (Natarajan et al. 2012) and hence
we employ this modified RPT learner in our experiments.



Adapting the CARDIA Data
The CARDIA Study examines the development and deter-
minants of clinical and subclinical cardiovascular disease
and its risk factors. It began in 1985 − 6 (Year 0) with a
group of 5115 men and women whose age were between
18-30 years from 4 centers : Birmingham, Chicago, Min-
neapolis, and Oakland. The same participants were asked to
participate in follow-up examinations during 87 − 88 (Year
2), 90 − 91 (Year 5), 92 − 93 (Year 7), 95 − 96 (Year 10),
2000 − 2001 (Year 15), and 05 − 06 (Year 20). Data have
been collected on a variety of factors believed to be related
to heart disease. This rich data set provides a valuable op-
portunity to identify risk factors in young adults that could
cause serious cardiovascular issues in their adulthood. This
in turn will allow physicians and policy makers to develop
patient-specific preventive treatments.

We used known risk factors such as age, sex, cholesterol,
bmi, glucose, hdl level and ldl level of cholestrol, exercise,
trig level, systolic bp and diastolic bp that are measured be-
tween years 0 and 20 over the patients. Our goal is to predict
if the CAC-levels of the patients are above 0 for year 20
given the above mentioned factors. Any CAC-level over 0
indicates the presence of advanced coronary atheroma and
elevated risk for future CHD and needs to be monitored. So,
we are in a binary classification setting of predicting 0 vs
non-0 CAC levels. Also, most of the population had CAC-
level of 0 (less than 20% of subjects had significant CAC-
levels) in year 20. Hence there is a huge skew in the data.

We converted the data set into predicate logic, see e.g. (De
Raedt 2008) for an introduction. The first argument of every
predicate is the ID of the person and the last argument is
the year of measurement. It is possible for our algorithm to
search at the level of the variables or ground the variable to a
constant while searching for the next predicate to add to the
tree. For example, we could use some values such as “never
smoked”, “quit smoking” etc. directly in the learned model
and in other cases, use variables in the node. We are able to
learn at different levels of variablizations in the model.

The risk factors, however, are continuous variables. For
instance, ldl, hdl, glucose, bmi, dbp, bp etc. all take real num-
bered values with different ranges. Many methods exist that
can discretize the data and/or directly operate on the continu-
ous data. While automatically discretizing the features based
on the data is preferred, some of these risk factors have been
analyzed by the medical community for decades and the
thresholds have been identified. For example, a bmi of less
than 16 is severely underweight, greater than 40 is extremely
obese etc. Hence, we used inputs from a domain expert to
identify the thresholds for discretizing the numeric features
and these are presented in Table 1. A particular value of the
measurements can fall into only one of these bins.

We also included the difference between the two suc-
cessive measurements as input features. This represents the
“change” in risk factor for the subject. For the boosting al-
gorithm (RFGB), we used the preset parameter of number of
trees, namely 20. The tree-depth of the trees was set to 3 and
hence we preferred a reasonably large set of small trees. As
mentioned above, we allowed the algorithm to construct the
aggregators on the fly. We compare against learning a single

Feature Thresholds
cholestrol 70, 100, 150, 200, 250, 300, 400

dbp 0, 30, 50, 70, 90, 100, 150
glucose 0, 50, 100, 200, 300, 400

hdl 10, 30, 50, 70, 100,120,200
ldl 0,50,100,150,200,400
trig 0,25,50,100,300,1000,3000
bmi 0,16,18.5,25,30,35,40,100

Classifier Parameters
J48 C 0.25 M 2

SVM C 1.0, L 0.01, P 1E12, N 0, V 1, W 1 Poly Kernel
AdaBoost P 100, S 1, l 10
Bagging P 100, S 1, l 10, M 2, V 0.001, N 3, S 1, L -1
Logistic R 1.0E-8, M -1

Table 1: (Top)Domain expert’s discretization of some of
the input features. (Bottom) Parameters of the propositional
classifiers

tree(RPT) of depth 10. This is due to the fact that every path
from root to leaf indicates an interaction between the risk
factors and our domain expert indicated that 10 should be
the upper limit of the interactions. We also compared our al-
gorithms against various algorithms and parameter settings
using the weka package and report the results. Hence, we
propositionalized our features by creating one feature for
every measurement at every year. We included the change
(difference between measurements in successive years) fea-
tures for the propositional data set as well.

The best parameters determined by cross-validation and
used for the propositional classifiers are presented in Ta-
ble 1(top). For J48, C was set as 0.25 while the minimum
number of examples is 2. For support vector machines, C
was set to be 1.0, the rescale parameter was set to 0.01 and
the poly kernel was used. For Logistic regression, R was
set to 1.0E-8 and allowed to converge (instead of maximum
number of iterations). In bagging, we used 10 iterations with
a bag size of 100 and no depth limit. We performed 5-fold
cross validation for evaluation.

Predicting CAC Levels
Our intention here is to investigate the benefits and the qual-
ity of relational models for CAC level prediction.

Comparison with Propositional Learners: We now
present the results of learning to predict CAC-levels using
our algorithms and the standard ML techniques. A full test
set has a very large skew towards one class and hence the
accuracies can be very inflated. Hence in the test set, we
sampled twice the number of negatives as positives. Recall
that the positive class would mean that the CAC-level of the
subject in year 20 is significant (i.e., greater than 0). Ta-
ble 2 compares the results of boosting (RFGB) and RPT —
against decision-trees (J48), SVM, AdaBoost, Bagging, Lo-
gistic Regression (LR) and Naive Bayes (NB).

A key property of many real-world data sets is a signif-
icantly increased number of negative examples relative to
positive examples. This is also seen in our data set since



Algorithm AUC-ROC
J48 0.609 ± 0.04

SVM 0.5 ± 0.0
AdaBoost 0.528 ± 0.02
Bagging 0.563 ± 0.02

LR 0.605 ± 0.02
NB 0.603 ± 0.03
RPT 0.778 ± 0.02

RFGB 0.819 ± 0.01

Table 2: Results on CARDIA data set. Area under ROC
curves have been presented.

most CAC-levels are zero and hence the number of nega-
tives can be order of magnitude more than the number of
positives. In these cases, simply measuring accuracy or con-
ditional loglikelihood (CLL) over the entire data set can be
misleading. It can be shown easily that predicting all the ex-
amples as the majority class (when the number of examples
in one class are far greater than the other) can have a very
good CLL value, but a very low AUC-ROC or AUC-PR
value (nearly 0). For more details of PR and ROC curves,
we refer the reader to (Davis and Goadrich 2006).

The AUC-ROC results presented clearly show that the
SRL approaches dominate the propositional ones. Most of
the standard algorithms classify nearly all the examples
as negative and as mentioned earlier, presenting accuracies
can be misleading. We chose to present AUC-ROC instead.
SVM and AdaBoost classify all examples as negative while
Bagging, LR, Naive Bayes and J48 classify a very small
number of examples (nearly 5% of positive examples cor-
rectly). In contrast, the SRL approaches have a smoother
classification performance and hence have a higher AUC-
ROC with RFGB having the best ROC.

We present the Precision Recall curves for the SRL al-
gorithms in Figure 1.d. We did not include the other al-
gorithms since their PR values were very low. The boost-
ing approach has a better performance particularly in the
medically-relevant high recall region. Evaluating precision
at high recalls assesses an algorithm’s ability to predict while
disallowing many false negatives, which is the critical com-
ponent to a good screening tool. In the case of predicting
CAC levels, a false negative means categorizing a patient as
“low-risk” who might potentially go on to have a heart at-
tack, a costly outcome we wish to avoid.

The effect of the number of trees on the performance of
RFGB is presented in Figure 1.a. We have presented both the
AUC-ROC and AUC-PR values as a function of the number
of trees. As with the previous case, the results are averaged
over 5 runs. As the number of trees increase, there is an in-
crease in the performance of RFGB. Also, it can be noted
that beyond a certain number of trees (in our case 10), there
is not a significant increase in the performance. When the
number of trees is close to 30, there is a slight dip in the per-
formance of the algorithm. This could be due to overfitting.
When we look at the trees closer, it appears that with larger
number of trees (say 30), the last few trees are picking up

random correlations in the data (though the regression values
in the leaves are quite low). Figure 1.b presents the effect of
the depth of the tree when learning a single tree (i.e., RPT).
It appears that the performance of the algorithm stablizes
around a depth of 5. Increasing beyond 5 does not have a
statistically significant impact on the performance showing
that interactions between 5 risk factors is sufficient to predict
the CAC-levels.

Assessment of the Results: The results were verified by
our radiologist, and are very interesting from a medical per-
spective for several reasons: First, as our last set of experi-
ments show, the risk of CAC levels in later years is mostly
indicated by risk factors in early years (ages 25 through
40). This is very significant from the point of view of the
CARDIA study since the goal is to identify risk factors in
early adult stage so as to prevent cardio-vascular issues in
late adulthood. Second, the learned tree conforms to some
known or hypothesized facts. For instance, it is believed that
females are less prone to cardiovascular issues than males.
The tree identifies sex as the top splitting criterion. Simi-
larly, in men, it is believed that the ldl and hdl levels are
very predictive and the tree confirms this. Third, the tree also
identifies complex interaction between risk factors at differ-
ent years. For instance – (i) smoking in year 5 interacts with
cholesterol level in later years in the case of females, and
(ii) the triglyceride level in year 5 interacts with the choles-
terol level in year 7 for males. Finally, the structure of the
tree could enable the physician and policy-maker to identify
treatable risk factors.

Prediction Based on Early Adulthood Data only: We
performed three additional experiments.

1 In the first setting, we repeated the earlier experiment with
one major change. Instead of considering all the risk factors
at all years, we considered the measurements only till year
10 i.e., only the risk factors from young adulthood. We aim
to predict the CAC-level in year 20. The average AUC-ROC
are 0.779± 0.01 and are not significantly different from the
ones learned using the entire data set. This confirms our hy-
pothesis that the risk factors in younger age are responsible
for the cardiovascular risks in older age.

2 To further understand the impact of the different years, we
ran the RFGB algorithm using data from individual years
only i.e., the first set of trees were learned with only year 0,
the second with only year 5 and so on. The goal is again to
predict CAC-level in year 20 given these individual years.
The results are presented in Figure 1.c (solid line) and again
they were averaged over 5 runs for each year. As can be seen,
year 0 has the highest AUC-ROC compared to the other
years. This is a very significant result. This further shows
that the factors of a subject between his/her ages 18 − 30
determine the risks in later years. This validates the obser-
vations made by Loria et al. (Loria, Liu, and et al 2007)
where individual correlations between risk factors at differ-
ent years and CAC-level at year 15 are measured to show
that year 0 risk factors are as informative as later years. Of
course, in the current experiment, we did not include things
such as changes in the behavior (for example, how much one
reduced the cholesterol level) and it is interesting to under-



Figure 1: (a) Effect of number of trees in performance of RFGB. (b) Effect of the depth of the tree in the performance of a single RRT. (c)
The impact of the measurements in different years in the CAC-level at year 20. (d) PR curves comparing the SRL algorithms.

stand how lifestyle changes of a person in early adulthood
can affect the cardio-vascular risks in later years.

3 The final experiment aims to compute the change in pre-
dictive performance of the algorithm with increase in data.
We first used only year 0 data and learned a single tree. Now
using this tree, we learned the second tree using year 5 data
and so on. So the goal is to see how AUC-PR changes with
adding more observations in future yeas and can be seen as
the progress of the risk factor over time. The results are pre-
sented in Figure 1.c (dashed). As expected from the previous
experiment, year 0 has a big leap and then adding individ-
ual years increases performance till year 7 and then plateaus
beyond that. This is again a significant result. Our initial re-
sults show that beyond ages 25− 37 of a person, there is not
much significant information from the risk factors.

Prediction using only socio-economic data: In addition,
we were also interested in finding how non-standard risk fac-
tors such as family history, daily habits and drug use can af-
fect the CAC-levels i.e., can we determine if these factors are
as predictive as the ones considered above? These diverse
set of features included the age of the children, whether the
participant owns or rents a home, their employment status,
salary range, their food habits, their smoking and alcohol
history etc. There were about 200 such questions that were
considered. Initial experiments showed that we were able
to predict the CAC-levels reasonably well and in fact with
comparable statistical performance to that of the clinical risk
factors. While the results are preliminary, they reveal strik-
ing socio-economic impacts on the health state of the popu-
lation, factors that have long been speculated on, but which
can be conclusively quantified.

Conclusion
Coronary heart disease (CHD) kills millions of people each
year. The broadening availability of longitudinal studies and
electronic medical records presents both opportunities and
challenges to apply AI techniques to improve CHD treat-
ment. We discussed the important problem of identifying
risk factors in young adults that can lead to cardiovascu-
lar issues in their late adulthood. We addressed the specific
problem of uncovering interactions among risk factors and
of using them for predicting CAC levels in adults given the
risk factor measurements of their youth. Our experimental
results indicate that the risk factors from the early adulthood

of the subjects seem to be the most important ones in pre-
dicting risks at later years.

Motivated by the initial success of our work, we plan to
pursue research in several different directions. First, we plan
to include all the collected features for training the models.
This will allow one to identify complex relationships be-
tween different types of features such as demographics and
psychosocial etc. Second, while the boosted set of trees have
high predictive accuracy, they may not necessarily be easy to
interpret by physicians. Hence our goal is to convert the set
of trees into a single tree. Third, the current data set does
not have the notion of “events” i.e., there are no records of
cardio-vascular issues such as heart attacks in the current
data set (year 20). Recently, these events have started to ap-
pear. It will be extremely important to directly predict the
events instead of the surrogates such as CAC levels. The ul-
timate goal is to make a tool for personalized prevention of
heart disease using ideas from machine learning that could
potentially be used for all young adults to get a precise esti-
mate of their future risk of disease.
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