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Abstract

Bayesian networks are a popular class of directed probabilis-
tic graphical models that allow for closed-form learning of
the local parameters if complete data are available. How-
ever, learning the parameters is challenging when the data are
sparse, incomplete, and uncertain. In this work, we present
an approach to this problem based on credal networks, a gen-
eralization of Bayesian networks based on set-valued local
parameters. We derive an algorithm to learn such set-valued
parameters from data using qualitative knowledge in the form
of monotonic influence statements. Our preliminary empiri-
cal evaluation shows that using qualitative knowledge reduces
uncertainty about the parameters without significant loss in
accuracy.

Introduction
Bayesian networks (BNs) are a powerful tool for represent-
ing and reasoning under uncertainty. They have been suc-
cessfully applied in a wide variety of domains (Daly, Shen,
and Aitken 2011) including healthcare (Lucas, Van der
Gaag, and Abu-Hanna 2004), weather forecasting (Abram-
son et al. 1996), software engineering (Pendharkar, Subra-
manian, and Rodger 2005) and risk management (Fan and
Yu 2004). However, BNs require complete and accurate data
to learn the network parameters from data. In many real-
world applications, such data may not be available.

To overcome the limitations of noisy and sparse data,
domain knowledge might be used to learn BNs. Do-
main knowledge can concisely determine the direction and
strength of relationships between variables (Niculescu et al.
2006) and trends in these relationships (Wellman 1990).
Incorporating domain knowledge has been studied more
broadly in machine learning. Knowledge in the form of
precision-recall trade-off (Yang et al. 2014), label prefer-
ences (Odom et al. 2015), privileged information and qual-
itative influence statements (Altendorf, Restificar, and Diet-
terich 2005; Yang and Natarajan 2013; Mathur et al. 2023;
Mathur, Gogate, and Natarajan 2023) have been successfully
used to learn more accurate and robust models. While these
methods overcome the limitations of noisy and sparse data,
they are still unable to deal with incomplete and uncertain
data.
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Credal networks (CNs) address this limitation by extend-
ing BNs to explicitly represent incompleteness and uncer-
tainty about probability distributions (Mauá and Cozman
2020). They provide a more cautious approach to the speci-
fication of probabilistic models. This makes CNs especially
useful for noisy, sparse, and possibly incomplete data do-
mains. However, inducing them purely from data can make
the model too “imprecise” and result in vacuous inferences.

In this work, we present a solution to the problem of
learning accurate yet robust models in the presence of noisy,
sparse, and possibly incomplete data by embedding domain
knowledge in CNs. Specifically, we consider a subclass of
qualitative influence statements called monotonic influence
statements to make CNs more precise. The main contribu-
tions of this paper are the development of a learning method
for CNs that effectively exploits monotonic influence rela-
tionships in the domain as knowledge and the preliminary
empirical evaluation of the learning algorithm.

The rest of this paper is organized as follows. First, we
provide some necessary background about CNs and quali-
tative influence statements. Then, we detail our method for
learning CNs from data using domain knowledge and report
our empirical evaluation before concluding the paper with a
summary and a discussion on the central outlooks.

Background Concepts
Bayesian and Credal Networks. Bayesian networks
(BNs, Koller and Friedman 2009) are probabilistic graphi-
cal models that compactly represent joint probability mass
functions (PMFs). Formally, a BN over a set of variables
X = {X1, . . . , Xn} is a pair ⟨G, θ⟩. Here, G is a directed
acyclic graph such that each node corresponds to a random
variable in X and θ is a set of conditional PMFs specified
for each variable, given all the possible values of its parents
PaX ⊂ X according to G. Graph G represents conditional
independence relations according to the Markov condition.
As a result, the joint PMF induced by the BN can be ex-
pressed as the following factorization:

P (x) =
∏

X∈X

P (x|paX) , (1)

for each x ∈ Dom(X), where the values paX and x are
those consistent with x.



Credal networks (CNs, Mauá and Cozman 2020) are a
generalization of BNs that allows us to define sets of joint
PMFs. A set of PMFs over X is called credal set (CS) and
denoted as K(X). CSs (Levi 1980; Augustin et al. 2014)
allow us to explicitly represent incompleteness in uncertain
specifications (e.g., a vacuous CS including all the possible
PMFs over X , thus expressing a condition of complete ig-
norance about X).

In practice, the specification of a CN is the same as that
of a BN except that each (conditional) PMF is replaced by
a CS. The Markov condition can also be applied to CNs,
provided that a suitable notion of independence is consid-
ered. Here we focus on the notion of strong independence,
i.e., X and X ′ are independent according to CS K(X,X ′)
if they are independent in the stochastic sense for each PMF
in the extreme points CS. This allows us to define a joint CS
K(X) as the convex closure of the set of all joint PMFs as
in Eq. (1) such that the conditional PMFs are taken from the
conditional CSs in the CN specification. Inferences in CSs
are consequently intended w.r.t. such a joint CS.

In this work, we consider CNs defined using closed and
convex CSs, that are finitely-generated, i.e., induced by a fi-
nite number of linear constraints on the PMFs P (X) belong-
ing to K(X). This allows us to equivalently describe each
conditional CS by listing its extreme points, whose number
should be also finite.

Decision-making in CSs. Recall that decision-making in
PMFs involves finding the state (decision) that minimizes
a given loss function. For the 0-1 loss function, this cor-
responds to taking the state x∗ := argmaxx∈X P (x).
Decision-making in CSs can be done using interval domi-
nance (Zaffalon 2002; Troffaes 2007). State x ∈ Dom(X)
is said to interval-dominate another state x′ ∈ Dom(X) ac-
cording to the CS K(X) if and only if:

min
P∈K

P (x) > max
P∈K

P (x′) , (2)

where the two optimizations can be computed w.r.t. the lin-
ear constraints in the CS specification. For closed convex
CSs, this can be done by enumerating the extreme points.
If a single state interval-dominates all other states, then that
state can be selected as optimal for the decision. However,
we might have more than one undominated state. In such
cases, we can abstain from making a further decision and
regard all the undominated states as optimal.

Learning closed convex CSs. The imprecise Dirichlet
model (IDM, Walley 1996) is the most popular approach
for learning closed convex CSs from categorical data. This
is a generalization of the Bayesian approach of combin-
ing a multinomial likelihood with a Dirichlet prior distri-
bution. Instead of a single Dirichlet prior, the IDM posits
a set of priors, called the imprecise Dirichlet prior. Specifi-
cally, when learning from a data set D of observations of the
random variable X, the set of Dirichlet priors is parameter-
ized as Dir(stX). Here, s ∈ R+ is a hyper parameter and
tX := {tx}x∈Dom(X) with tx ∈ [0, 1] and

∑
x tx = 1. The

probability induced by the IDM is therefore:

P (x) =
Nx + stx
N + s

, (3)

where Nx is the number of times X = x occurs in data and
N is the total number of observations in the D. The bounds
of the above expression are:

P (x) := min
P∈K

P (x) = min
tx∈[0,1]

Nx + stx
N + s

=
Nx

N + s
, (4)

P (x) := max
P∈K

P (x) = max
tx∈[0,1]

Nx + stx
N + s

=
Nx + s

N + s
. (5)

Those bounds induce linear constraints defining a CS K(X).
For data sets that are small w.r.t. the parameter s, these
bounds can be quite broad. In the rest of the paper we dis-
cuss a procedure to shrink these bounds by using domain
knowledge.

Domain knowledge as qualitative influence statements.
Qualitative influence statements (QISs, Wellman 1990) de-
scribe the influence of one or more variables over another
variable. These statements allow domain experts to con-
cisely express a trend in the distribution without needing to
specify precise values. Here we focus on learning CNs using
a class of qualitative influence statements called monotonic
influence statements (MISs, Altendorf, Restificar, and Diet-
terich 2005). MISs refer to ordinal, and hence also Boolean
as a special case, variables. Given a variable Y and a joint
variable X in a probabilistic model, we say that Y is posi-
tively monotonically influenced by parent X ∈ X if higher
values of X stochastically result in higher values of Y , ce-
teris paribus. Such an influence is denoted as XM+

≺ Y and
corresponds to domain knowledge of the form “As X in-
creases, Y also increases”. We express this MIS as the in-
equality:

P (Y ≤ y|x, x̃) ≥ P (Y ≤ y|x′, x̃) (6)

for each x, x′ ∈ Dom(X) such that x ≤ x′, y ∈ Dom(Y ),
and x̃ ∈ Dom(X̃), where X̃ := X \ {X}. Negative influ-
ence can be defined analogously and denoted as XM−

≺ Y .

Related Work. QISs have been used to induce more ac-
curate precise probabilistic models from noisy and sparse
data for both discriminative (Kokel et al. 2020; Odom et al.
2015) and generative learning settings (van der Gaag, Bod-
laender, and Feelders 2004; Altendorf, Restificar, and Di-
etterich 2005; de Campos, Tong, and Ji 2008; Yang and
Natarajan 2013; Plajner and Vomlel 2020; Mathur et al.
2023; Mathur, Gogate, and Natarajan 2023). In this work, we
deal with learning imprecise generative models from sparse,
incomplete, and uncertain data. QISs have been previously
used to make generative models more precise. Renooij and
van der Gaag (2002) introduce influence-intervals and per-
form interval-propagation on Qualitative Probabilistic Net-
works to shrink the intervals. In contrast, our method main-
tains probabilistic semantics by dealing with closed, convex
credal sets. QISs have also been used to learn conditional
credal sets. de Campos and Cozman (2005) use qualitative
influences as constraints on the imprecise Dirichlet prior.
However, in the presence of prior-data conflicts (Evans and
Moshonov 2006), this approach does not guarantee consis-
tency with the qualitative knowledge. Our approach of di-
rectly constraining a credal set provides a more flexible so-



lution to this problem. This also makes it independent of the
way that the CS is initially computed.

Methodology
We consider the problem of integrating qualitative knowl-
edge (and in particular MISs) in the statistical learning of
an imprecise probabilistic model. We consequently focus on
the following learning task.

Given: Data set D := {y(i),x(i)}Ni=1 over variables
(Y,X) and a collection C of MISs as in Eq. (6).
To Do: Learn a collection of conditional CSs over Y , say
{K(Y |x)}x∈Dom(X), that are compatible with C.

Embedding a MIS in the prior specification can be more
complicated as the relation in Eq. (6) induces a constraint
between different conditional distributions. Thus, to solve
the above problem, we obtain an initial set of CSs from D
through the standard IDM learning and then derive a pro-
cedure to shrink the IDM bounds by eliminating PMFs that
violate the MISs in C. We achieve that by jointly solving for
all the maximum values that satisfy the monotonicity con-
straints. This corresponds to the following optimization:

argmax
P 0(y|x)≤qy|x≤P 0(y|x)

qy|x|=C

x∈Dom(X)
y∈Dom(Y )

∑
x∈Dom(X)
y∈Dom(Y )

qy|x , (7)

where, for each y ∈ Dom(Y ) and x ∈ Dom(X), qy|x is
an optimisation variable, P 0(y|x) and P 0(y|x) are the IDM
constraints as in Eqs. (4) and (5), while |= C denote com-
patibility between the optimization variables and the MIS
constraints in C as stated by Eq. (6). Let us denote the set
of all the optimization variables as q. An analogous opti-
mization can be considered for the lower bounds. Such lin-
ear programs are not guaranteed to have feasible solutions,
because some constraints might be unsatisfiable under the
IDM constraints. If this is the case we address the optimiza-
tion using the barrier penalty method (Luenberger and Ye
2016). Specifically, we encode each MIS constraints c ∈ C
of the form XM+

≺ Y as δc(q, ϵ) ≤ 0 where:

δc(q, ϵ) =
∑
y′≤y

qy′|x′,x̃ −
∑
y′′≤y

qy′′|x,x̃ + ϵ , (8)

and we introduce a penalty max{0, δc(q, ϵ)}2. Then, instead
of Eq. (7), we solve a sequence of optimization problems of
the form:

argmax
P 0(y|x)≤qy|x≤P 0(y|x)

x∈Dom(X)
y∈Dom(Y )

L(q)− λ
∑
c∈C

max{0, δc(q, ϵ)}2︸ ︷︷ ︸
Penalty

 ,

(9)

for λ = 100, 101, 102, . . . , 10L until the penalty term van-
ishes, where L(q) is the objective function in Eq. (7). If a
feasible solution exists, then this method is guaranteed to

Algorithm 1: LearnConditionalCredalSetWithKnowledge
Input:

D (data set over X and Y )
C (MISs)
tmax (maximum number of iterations)

Output:
CS bounds

1: Initialize P (y|x) = P 0(y|x), P (y|x) = P 0(y|x) for
each y ∈ Dom(Y ) and x ∈ Dom(X)

2: {P (y|x)}y,x = ConstrOpt(+1, P 0, P 0, C, tmax)

3: {P (y|x)}y,x = ConstrOpt(−1, P 0, P 0, C, tmax)

4: return {[P (y|x), P (y|x)]}y∈Dom(Y ),x∈Dom(X)

Algorithm 2: ConstrOpt
Input:

σ (+1 if maximize and -1 if minimize)
{P (y|x), P (y|x)}y∈Dom(Y ),x∈Dom((X) (CS bounds)
C (MISs)
tmax (maximum number of iterations)

Output:
upper/lower CS bounds satisfying C

1: Initialize q = argmax
P (y|x)≤qy|x≤P (y|x)

x∈Dom(X)
y∈Dom(Y )

σL(q)

2: λ = 1
3: while

∑
c∈C max{0, δc(q, ϵ)}2 > 0 and t ≤ tmax do

4: q = argmax
[
σL(q)− λ

∑
c∈C max{0, δc(q, ϵ)}2

]
5: λ = λ× 10
6: t = t+ 1
7: end while
8: return q

converge to a solution in the limit (Luenberger and Ye 2016).
We analogously proceed for the minimization task.

Algorithm 1 details our procedure to obtain the consistent
conditional CSs from the data set D and the MISs C. The al-
gorithm begins by computing the IDM CSs from D. It then
uses the MISs C to shrink the CS bounds. It does so by find-
ing the highest and lowest values in the initial CS that satisfy
all the constraints in C. These values are obtained by con-
strained optimization based on the barrier penalty method.
This is performed by sub-procedure detailed by Algorithm 2.

Experimental Evaluation
We aim to answer the following research question:

(Q) Does using monotonicities with the IDM improve its
coverage without losing performance?

Data sets. For a preliminary validation, we consider five
data sets from the UCI Machine Learning Repository. We
use the same pre-processing and domain knowledge as in



Data set |D| Y X

haberman 306 survive nodes−, year+, age−
diabetes 392 diabetes Age+, Pregnancies+, BMI+, PedigreeFunction+
breast-cancer 277 recurrence age+, menopause+, deg malig+, tumor size+, irradiat−
thyroid 185 Hyperthyroid TSH+, TSH diff+, T3 resin+, T3+, T4+

heart-disease 297 heart disease sex male+, age+, trestbps+, chol+, diabetes+

Table 1: Data sets used for empirical evaluation, the number of examples (|D|), the target (Y ) and feature variables (X). A
feature with the superscript + denotes a positive monotonic influence, and a feature with the superscript - denotes a negative
monotonic influence.

Data set BN CN-IDM CN-IDM-MIS
accuracy accuracy uncertainty accuracy uncertainty

haberman 0.73± 0.01 0.77± 0.01 0.09± 0.03 0.76± 0.02 0.05± 0.01
diabetes 0.68± 0.05 0.76± 0.06 0.35± 0.05 0.72± 0.03 0.04± 0.03
breast-cancer 0.69± 0.02 0.80± 0.05 0.31± 0.11 0.76± 0.04 0.08± 0.08
thyroid 0.94± 0.02 0.95± 0.02 0.01± 0.01 0.95± 0.02 0.01± 0.01
heart-disease 0.57± 0.03 0.67± 0.10 0.39± 0.14 0.63± 0.06 0.08± 0.05

Table 2: The accuracy and fraction of uncertain examples (uncertainty) in the test set for each method. The mean and standard
deviation for the scores are computed by stratified five-fold cross-validation. Note that the BN method has by construction zero
uncertainty.

prior work (Yang and Natarajan 2013). Table 1 details the
size of the datasets, the Boolean target variables considered
in our experiments, and the parent variables of the target to-
gether with the kind of monotonic influence they have on
the target. The target variables (Y ) in all the data sets are
Boolean and the parents (X) are ordinal variables.

Methods. We compare our algorithm (discussed in the
previous section and denoted here as IDM+QI) against two
baselines – (1) a precise BN estimator with a Dirichlet prior
(denoted as BN), and (2) a CN estimator based on the pure
IDM (denoted as CN-IDM-MIS). We set the prior parame-
ter s = 1 for all data sets and models. Additionally, we set
ϵ = 0.001 for all the constraints. The Python code used for
the experiments is freely available in a public repository.1

We perform inference in the CN models by interval-
dominance. If neither value of the Boolean target interval-
dominates the other, we mark that data point as uncertain
and do not make an inference for it. For the BN model, we
perform inference by thresholding the positive probability at
≥ 0.5.

Metrics. We evaluate the methods using two metrics –
fraction of uncertain data points (uncertainty) and accuracy
over non-uncertain data points. We compute these metrics
by five-fold cross-validation.

Results.
(Q) Table 2 presents the accuracy and the number of un-

certain examples for the three methods under consid-
eration. The IDM method achieves the highest ac-
curacies, but the price is being uncertain about a

1https://github.com/saurabhmathur96/credal-cpd

large fraction of the test examples (over 30% for dia-
betes, breast-cancer, and heart-disease). The proposed
method (CN-IDM-MIS) reduces the number of uncer-
tain examples relative to CN-IDM by 64.4% on aver-
age with an average relative decrease in accuracy of
3.4%. Hence the research question is answered affir-
matively.

Conclusions and Outlooks
We presented an IDM-based procedure to learn credal net-
works from data in a way that is also consistent with qual-
itative knowledge expressed by monotonic influence state-
ments. This is achieved by an iterative procedure shrinking
the IDM bounds. Our preliminary tests demonstrate that the
proposed algorithm yields conditional credal sets that have
higher coverage without losing much accuracy. For a deeper
validation, more extensive experiments involving a sensitiv-
ity analysis with respect to the algorithm parameters should
be considered. Additional future work includes extending
the proposed method to support other qualitative influence
statements like synergies. Moreover, we also intend to con-
sider a more general setup where the qualitative influence
statements are not restricted to parent-child relations.
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