
Multi-Agent Inverse Reinforcement Learning
Sriraam Natarajan1, Gautam Kunapuli1, Kshitij Judah2, Prasad Tadepalli2, Kristian

Kersting3 and Jude Shavlik1

1Department of Biostat. & Med. Informatics, University of Wisconsin-Madison
2School of EECS, Oregon State University

3Fraunhofer IAIS, Germany

In traditional Reinforcement Learning (RL) [4], a single agent learns to act in an environment by
optimizing some notion of long-term reward. However, there are several cases in which the reward
function is not easily specifiable, or even known [3]. One such case where this occurs naturally is
apprenticeship learning [1], in which an agent observes an expert’s actions and has to learn from
the demonstration. Consider, for example, a human operator who monitors traffic intersections and
controls the signals to regulate the traffic. This expert’s actions to determine optimal traffic regulation
are guided by some reward function that is not explicitly observed. In order for an automated agent
perform the same task, it has to observe the expert’s demonstrations and learn a policy with respect
to the true reward function, which is unknown. This is the goal of Inverse RL (IRL): to determine
the reward function that the expert is optimizing. The observations include the expert’s behavior
over time in different situations, measurements of sensory inputs to the expert, and the model of the
environment.

Thus far, IRL methods have usually been studied in the context of a single agent. Though this
is an interesting problem that has deservedly received attention recently, there are several real-world
scenarios in which multiple agents act independently to achieve a common goal. One such example is
in Figure 1 (left): four agents control signals at four intersections based on local traffic density. The
agents at intersections S1 and S4 are near a highway and their preferences will be different from those
of the other two signals. While all the signals act in a locally optimal manner (i.e., they individually
optimize the traffic at their own intersection), there is a necessity for co-ordination. It is conceivable,
then, that there is a centralized controller that co-ordinates the actions of different agents so that they
optimize the traffic over all the intersections.

We consider learning in situations similar to the scenario presented above, that is, multi-agent
inverse reinforcement learning, a challenging problem for several reasons. A straightforward solution
might be to consider individual agents and learn the reward functions for each agent individually;
however, this does not always lead to a good global solution since the optimal behavior of one agent
can possibly be suboptimal for another. Another challenge is that we may never be able to observe the
actions of the centralized controller directly but only the actions of individual agents. The key idea
here is to have the learning system observe individual agents, learn the reward functions of all them,
and then control the agents’ policies to optimize the joint reward. We consider weighting these agents,
where some agents’ policies are better optimized than others. For example, signals S1 and S4 are
near a highway and hence the traffic entering (leaving) these two signals from (to) the highway needs
to optimized. Our framework provides a natural way of incorporating such differences as weights for
individual agents. We highlight two main contributions:

• We consider the multi-agent IRL problem in which agents co-ordinate to achieve a common goal.
More precisely, we assume that it is possible to observe multiple agents for a significant period
of time operating under a centralized mediator’s policy. The controller’s goal is to balance
the policies of individual agents in order to maximize the (weighted) sum of the individual
rewards. Thus, we try to determine the individual reward functions of the agents thus learning
the reward function of the centralized controller. In order to achieve this goal, we consider the
average-reward setting for IRL [2]. It has been shown that average-reward RL is more effective in
many tasks where discounted-reward RL leads to myopic policies. Hence, a formal algorithm for



State Expert Policy Learner Policy

LHLH a=4, p = 1 a=4, p= 0.3

MLLM a=1, p = 1 a=1, p= 0.3
a=4, p= 0.3

MMLM a=1, p = 1 a=1, p= 0.3
a =2, p=0.2
a = 4, p=0.2

HMHL a=1, p = 1 a=1, p= 0.43
a=3, p=0.27

HHML a=1, p = 1 a=1, p= 0.37
a=3, p=0.27

Figure 1: (left) A scenario in the traffic-routing domain. (center) Learned policy compared to the expert’s policy
for a few selected states on the traffic-routing domain. The expert always chooses actions deterministically, while the
learner is able to choose from several actions that such that it gains a higher expected reward. This allows the learner
to sometimes outperform the expert. Each agent has 4 actions and there are 4 agents, leading to 16 actions (a) and 4
components of the state for the central controller. (right) Learned value function for a 5× 5 grid-world experiment.

inverse average-reward RL is crucial in solving several problems. Since we consider the multi-
agent setting, the value functions, immediate rewards (correspondingly the average-rewards)
all are vectors. We derive the equations for the IRL problem using the Bellman equations for
average-reward RL which, when formulated as optimization problem lead to an LP or QP. We
use different regularizations (L1, L2 and L∞) to better understand their impact on the learned
reward functions. Once the reward functions are learned, we use average reward multi-agent
reinforcement learning algorithms to learn to act in the environment.

• The second contribution is the evaluation of the algorithms on various domains. First, in order
to test the validity of our approach, we designed a simple 5× 5 grid world problem where agents
trying to reach the center of the grid are controlled by a hand-coded centralized controller. The
learned value function is shown in Figure 1 (right). The value function forms a cone indicating
that the cell at the center (goal) has the highest value and then decreases progressively as we
move away from the center. The experiment serves as a proof-of-concept that our formulation
can retrieve the true reward and value functions. The approach was also evaluated on the
traffic-routing domain presented above: multiple traffic signals coordinated through a centralized
controller. Here, given a few trajectories of the policies of different agents, we demonstrate that
our approach learns reward functions that can imitate the expert policy reasonably and, in some
cases, even improve upon the expert. This is desirable since it is not possible for the expert to
provide extremely large number of trajectories that span the entire state space of the problem.
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