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Abstract
We consider the problem of interactive transfer learning where a human expert provides guidance to the transfer learning 
algorithm that aims to transfer knowledge from a source task to a target task. One of the salient features of our approach is 
that we consider cross-domain transfer, i.e., transfer of knowledge across unrelated domains. We present an intuitive interface 
that allows for an expert to refine the knowledge in target task based on his/her expertise. Our results show that such guided 
transfer can effectively reduce the search space thus improving the efficiency and effectiveness of the transfer process.

1  Introduction

Transfer learning [19] is a formalism inside machine learning 
that learns from a source task and transfers the knowledge 
(and possibly adapts/refines this knowledge) to a target task. 
This is extremely useful in the case where there is a paucity 
of training data in the target domain, enabling the exploita-
tion of available knowledge to jump-start the learning pro-
cess. In these methods, a source task is used for learning a 
model (or a set of models) that is then transferred to a related 
task where learning can be efficient given the bias from the 
source model. This technique has been successfully applied 
across several problems including classification and sequen-
tial decision-making [12, 20, 22]. While successful, most of 
these techniques work with related problems or within a single 
domain and do not necessarily transfer across (seemingly) 
unrelated domains.

To achieve domain independent transfer, richer repre-
sentations such as relational models, structured representa-
tion such as graphs or first-order logic (FOL) is a minimal 
requirement [4, 8, 13, 15]. As a motivating example, con-
sider the NELL system [2] that reads the web. Currently, 
NELL is well-versed in the sports domain, having learned 

several rich rules about sports organizations. To transfer 
the acquired knowledge to a different domain, say financial 
organizations, it is imperative to use a rich representation 
that allows modeling the objects, their relations and the 
uncertainty that inherently exists in both domains.

Two different approaches have been applied for cross-
domain transfer based on first-order probabilistic methods. 
The first set of approaches [4, 8] employ second-order logic 
to model regularities between seemingly unrelated domains. 
The inherent assumption is that these domains possibly share 
a common sub-structure that can be exploited using higher-
order logic. The second set of approaches [13, 15] aims to 
find an explicit mapping of predicates using local search 
methods. Both these approaches employ the probabilistic 
logic methods of Markov logic networks (MLNs) to capture 
the source domain knowledge.

Following the second approach, recently, we proposed 
a transfer method for relational data that uses search bias 
(language bias) from a source domain to accelerate learning 
in the target domain [11]. Inspired by the research in Induc-
tive Logic Programming (ILP) [5], this approach performs 
“type-matching” that compares the types, analogous to ILP’s 
modes, between two predicates.1 Type-matching compares 
the types of the arguments in the predicates of the source and 
target domain to identify potentially similar objects across 
the domains. Once the match is obtained, we perform a 
type-based tree construction that allows our method to con-
struct the clauses in the target domain. This matching of the 
predicates based on types and the construction of the initial 
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knowledge in the target domain can be seen as introduction 
of a language-bias for the target domain. Therefore, this 
algorithm is called language-bias transfer learning (LTL).

While successful, LTL has a few significant issues: (1) it 
can potentially introduce hundreds of (probabilistic) rules in 
the target domain from a single source domain rule. In our 
prior work, the domain expert was used to refine the target 
domain rules . It is unreasonable to expect a domain expert 
to vet these large number of rules. (2) Many of these rules 
are potentially trivial/non-optimal w.r.t. the target domain 
data. Consequently, the burden on the expert in vetting out 
the rules after learning appears to be cumbersome. (3) The 
parameter tying aspect (where objects of similar types share 
the parameters) can be sub-optimal since the domains can 
be drastically different. There is a need to allow a human to 
interactively guide this process to learn optimal parameters.

To alleviate this issue, we introduce a novel interactive 
transfer learning approach that builds on the previous trans-
fer method. The key difference w.r.t LTL is that we do not 
wait until the completion of the transfer process to solicit 
expert input. Instead, the expert interacts with the algorithm 
as the algorithm performs the search through the space of 
the rules. The expert has the ability to guide the search by 
pruning out seemingly inaccurate parts of the search space 
or could potentially introduce a new path for search or even 
instantiate particular variables of predicates as needed.

To facilitate seamless interaction, we also developed an 
interface that presents the expert with the current search 
process and accepts inputs from the expert in terms of add-
ing a predicate, modifying it or suggesting a new branch to 
explore for the search. Given the interaction with the user, 
we develop a utility based heuristic method that chooses 
the optimal path to explore during transfer in the absence 
of expert input.

In this paper, we make the following contributions: (1) 
we introduce a novel framework that allows the expert to 
guide the transfer learning algorithm, (2) we define a robust 
utility based optimization problem that allows for efficient 
exploration in a new domain, (3) we design an intuitive 
interface that allows for seamless expert interaction, and (4) 
we empirically show that this method allows for much more 
efficient search than the original transfer method.

The rest of the paper is organized as follows—after 
reviewing the background on probabilistic logic models, 
we present the necessary details of LTL algorithm to make 
this work self-contained. We then discuss our interactive 
approach. Next, we present our empirical evaluation across 
four transfer tasks before concluding by outlining areas of 
future research.

2 � Background and Prior Work

2.1 � Background: Probabilistic Logic Models 
and Transfer Learning

Probabilistic Logic Models (PLMs) employ FOL for repre-
senting complex structure, and probability theory for mod-
eling uncertainty. The advantage of PLMs [7] is their capac-
ity to succinctly represent probabilistic dependencies among 
the attributes of different related objects, leading to compact 
representations of learned models. We consider two kinds of 
models in this work: undirected models that use weights and 
directed models that use probability distributions.

One of the most popular PLMs is Markov logic net-
works (MLNs) [6]. An MLN consists of a set of formulas 
in first-order logic and their real-valued weights, {(wi, fi)} . 
Together with a set of constants, we can instantiate an MLN 
as a Markov network with a node for each ground predicate 
(atom) and a feature for each ground formula. All ground-
ings of the same formula are assigned the same weight, 
leading to the following joint probability distribution over 
all atoms:P(X = x) = 1

Z
 exp

�∑
i wini(x)

�
 , where ni(x) is the 

number of times the ith formula is satisfied by a possible 
world x and Z is a normalization constant (as in Markov 
networks).

On the other end of the spectrum are directed models 
such as Bayesian Logic Programs (BLPs) [9] that employ 
conditional distributions for every clause (primarily horn 
clauses). The distributions, due to multiple instances of the 
same rules and due to multiple rules, are combined using 
combination functions [16] that combine multiple probabil-
ity distributions into a single distribution. For the purposes 
of this work, it is sufficient to realize that the use of weights 
and probabilities are two different ways of softening hard 
FOL clauses.

While there is significant research in learning these 
parameterized rules, especially for MLNs [10], these meth-
ods assume the presence of large amounts of training data. 
For learning with minimal data, previously mentioned trans-
fer learning methods that employ PLMs are closely related 
to our work. Specifically, the TAMAR algorithm [13] and 
its extension SR2LR [15] are quite similar in spirit. TAMAR 
maps a source MLN to a target MLN using a concept called 
consistent-type mapping which essentially maps one source 
type to one target concept. SR2LR on the other hand trans-
fers clauses with a small number of predicates (short-range 
clauses) from the source domain to develop longer-range 
clauses in the target domain. Other algorithms such as DTM 
[4] and TODTLER [8] use MLNs to create a second-order 
representation from the source that is then used to instanti-
ate clauses in the target domain. While quite effective, these 
methods assume a hyper-parameter that allows them to 
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facilitate the transfer. In contrast, LTL requires source FOL 
clauses (which provide the language bias), and the target 
domain’s relational structure. Our results show that target 
domain data can help refine this bias to learn a more accu-
rate model.

2.2 � Prior Work: Language‑Bias Transfer Learning

Our previous work [11] introduced a transfer learning 
approach (called LTL) using the language bias from the 
source domain to build candidate clauses (first-order rules) 
in the target domain of interest. The candidate clauses could 
then be scored based on the data and refined to generate 
more accurate clauses, hence accounting for differences 
between the source and target domains. Unlike previous 
work on transfer learning which used second-order logic to 
find patterns in the source to ground in the target domain [4, 
8], the key idea is that LTL makes use of the basic search 
operations of Inductive Logic Programming (ILP) [5] to 
perform similar searches in the target domain as would be 
performed to build the source knowledge.

In ILP, given the definition of the input, we perform a 
greedy search through the space of possible theories, declar-
atively, by a set of mode definitions to guide the search pro-
cess. Following the popular ILP system like ALEPH [21], 
we start with a bottom clause, variablize the ground state-
ments and successively add/replace literals that optimizes 
the likelihood of a theory based on the data. Consider the 
following example where a professor is likely to coauthor 
with his/her students:

In ILP, this source clause is built in the following steps, 
given that prof(per1) is the head:

–	 Add predicate with 1 argument matching with the head
–	 Add 2 predicates with 1 argument matching previous 

predicate

When transferring this to the problem of predicting the boss 
of a person, the following clause could be constructed:

Notice how the structure (the flow of tied parameters) in 
the target domain clause is the same as in the source domain 
clause. While this clause seems reasonable, it is likely that 
many possible clauses exist in the target domain that satisfy 
the structure constraint imposed by a single source clause. 
LTL [11] represents the space of possible matches between 
source and target domain as a matching-type tree ( MT2 ). 
Following our original work [11], a MT2 can be defined as,

auth(per1,ppr1), auth(per2,ppr1), stud(per2) ⇒ prof(per1)

proj(per1,proj1), proj(per2,proj1), employee(per2) ⇒ boss(per1)

Definition 1  MT2
node

 —a node of an MT2 is a predicate with 
its variables assigned as a “+”/“−” type for each argument.

Definition 2  MT2
edge

—an edge of an MT2 is labeled with two 
parts. The first represents the types in the lower-level MT2

node
 

that the edge is connected to which are shared with the 
query. The second represents the number of variables that 
are shared among the two MT2

node
 s connected by this edge.

Given the definitions of the nodes and edges, a MT2 can 
now be defined as,

Definition 3  MT2 —a matching-type tree ( MT2 ) is a tree 
rooted at the query MT2

node
 and consists of MT2

node
 s and 

MT2
edge

s.

Figure 1-left, is the source tree, given as MT2
S
 , represents 

the set of rules to predict ��������� relation in the univer-
sity domain.2 For the target domain, the tree presented in 
Fig. 1-right is target search tree, given as MT2

T
 with rules for 

����������� prediction. An example of this transfer from 
a university domain to a movie domain, as shown in Fig. 1, 
represents all of the possible type-matchings from the root 
node to any predicate in the target domain. The types refer 
to the possible parameter types that can be matched from 
the source clause to types in the target domain. The flow of 
instances of these types in a clause is often referred to as 
parameter tying, and this serves as the building block for the 
language-bias obtained from the source for transfer.

The key idea is that the query workedUnder in the tar-
get domain matches with query advisedBy in the source 
domain. The predicate professor has one argument with type 
(denoted by +p ) that matches with its query advisedBy. Cor-
respondingly, in the target domain, the predicate director 
matches with its query workedUnder (with a type +p present 
in both). To predict the relationship workedUnder in the tar-
get domain, LTL searchs over these parameter types in the 
source domain to construct clauses with a similar structure 
in the target domain. For brevity, we present only a part of 
the MT2

T
 tree on the right side of the figure. The paths with 

the cuts (!) in MT2
T
 match a rule in MT2

S
 of the source domain 

(for instance !(R2)). As shown in Fig. 2, at first LTL uses the 
source clauses to create MT2

S
 . This MT2

S
 acts as a language 

bias to create the possible search tree MT2
T
 for each query 

predicate given the target domain description (predicates). 
This is similar in spirit to the mode-directed path finding 
algorithm of Ong et al. [18]. MT2

T
 is then further pruned 

based on MT2
S
 . Finally resulting paths in MT2

T
 are converted 

to clauses. As part of refinement (both probabilistic and 

2  We use the subscripts S to denote the source domain and T, the tar-
get domain respectively.
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theory), LTL can add or delete predicates in the clauses to 
obtain a more accurate set of clauses for the target domain 
queries.

Algorithms 1 and 2 present two primary components of 
Language-bias transfer learning. The GenMatches function 
in Algorithm 2 is called for every path in MT2

S
 by the Per-

formTransfer function in Algorithm 1 to construct the set of 
MT2

T
 paths that would form the target domain clauses, such 

that the MT2
T
 paths will have similar edge parameters as that 

of the MT2
S
 path. Note that LTL incrementally grows the 

search tree in the target domain and stops on type matching 
constraint violation thus improving the learning efficiency. 
Tables 1 and 2 present some sample transferred clauses and 
refined clauses respectively.

Fig. 1   Examples of a type-based matching between the UW-CSE and IMDb datasets. It represents the flow of types which is shown with colors. 
We present only a part of the search tree MT

2 for brevity. Paths in the tree representing clauses are shown as shown as !(Ri). Best viewed in color

Fig. 2   LTL takes as input the 
source clauses and the target 
domain description and gener-
ates the MT

2 trees. Then, our 
transfer learning approach 
creates clauses in the target 
domain, and refines them to 
output the final model
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Table 1   Sample clauses in 
a source (S) domain and 
corresponding transferred 
clauses from the target (T) 
domain

IMDb ⇒ Cora
   S: director(d) ⇒ workedUnder(a,d)
   T: venue(p1,v1) ⇒ samevenue(v1,v2)
   S: mov(m, p1) ∧ mov(m, p2) ∧ act(p1) ∧ dir(p2) ⇒ workedUnder(p1, p2)
   T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)

WebKB ⇒ Yeast
   S: linkTo(w,wp1,wp2) ⇒ deptOf(wp1, wp2)
   T: interact(a, a) ⇒ proteinClass(a,c)
   S: stud(wp1) ∧ dept(wp2) ∧ linkTo(wd, wp1, wp2) ⇒ deptOf(wp1,wp2)
   T: interact(c,c) ∧ interact(a,d) ∧ interact(c,a) ⇒ proteinClass(a,b)

NELL: Sports ⇒ Finance
   S: teamPlaysTeam(t1 ,t2) ∧ plays(s, t2) ⇒ teamPlaysSport(t1, s)
   T: acquired(c1,c2) ∧ econSectorComp(s1, c2) ⇒ compEconSector(c1, s1)
   S: athletePlaysSport(a, s) ∧ onTeam(a, t) ⇒ teamPlaysSport(t1, s)
   T: bankInCountry(c2, country1) ∧ aquired(c2, c1) ⇒ compEconSector(c1, s1)

Table 2   A sample transferred 
clause (T) and refined clause 
(R) in three domains

Cora

   T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)
   R: wordVen(v1,w1) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)

Yeast

   T: comp(p,c) ∧ func(p,f) ∧ loc(p,l) ⇒ proteinClass(p,c)
   R: func(p,f) ∧ loc(p,l) ⇒ proteinClass(p,c)

NELL: Finance

   T: bankInCountry(c2, country1) ∧ aquired(c2, c1) ⇒ compEconSector(c1, s1)
   R: bankInCountry(c2, country1) ∧ aquired(c2, c1) ∧ econSectorComp(s1, c2)⇒ compEconSector(c1, 

s1)
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While these domains are clearly similar, our previous 
work [11] showed that the LTL algorithm is effective even in 
cases where the domains are not obviously similar. However, 
a key drawback of the approach is the difficulty in extracting 
the best clauses in the target domain, post transfer, especially 
when there is not sufficient target data to distinguish among 
the clauses. A single source clause can generate hundreds of 
matching target clauses in even moderately sized domains. 
We propose an interactive approach that is able to visualize 
the transfer process so that experts can assist the algorithm 
in selecting high-quality target clauses (or prune low-quality 
clauses) without having to define them a priori.

3 � Guided Interactive Transfer Learning

To reiterate, our goal is to develop an interactive learning 
method that allows for effective transfer. Specifically, we 
are interested in leveraging the domain experts in the target 
domain to provide us with inductive/search bias that allows 
for effective cross-domain transfer. We now describe our 
interactive transfer learning algorithm. It consists of three 
fundamental components. 

1.	 The heuristic adaptation of the transfer learning algo-
rithm LTL, that we call as Heuristic LTL or HLTL

2.	 Set of interactions the expert performs in order to guide 
the algorithm; Interactions

3.	 The interface which enables this seamless interaction

We will explore each of these components serially in our 
path to constructing the framework. Before presenting each 
contribution, First, we will define the problem clearly.

Problem definition The goal is to generate clauses in tar-
get domain, KT , given the clauses from source domain KS . 
This is done by taking as input. 

1.	 The possible add operations mapped from source to tar-
get (B)

2.	 The guidance provider/expert, E,
3.	 The small amount of target data available, DT.

Formally, our goal is:

(1)

argmax
b∈B,bparams∈b

#

wE(b) ⋅ P(littarget ∣ f (b, bparams))

B− the possible branches at the current node

b#− the parameter tyings possible at the branch b

f (b, bparams)− function to generate the clause body at node b,

with parameter tying bparams

wE(b)− the weight assigned to a branch by the expert

littarget− the target literal of the domain

f (b, bparams) is a function which generates the clause body 
at node b, by parsing the path to the node b, and instantiat-
ing node b to have bparams . We now explain this formulation 
along with the notion of confidence which determines the 
value of P(littarget|f (b, bparams)) in this section.

3.1 � Heuristic Based Language‑Bias Transfer 
Learning

We adapt the LTL algorithm presented earlier as our base 
transfer algorithm for relational data. Recall that LTL per-
forms transfer by utilizing the language-bias obtained from a 
single-piece of source knowledge to construct the MT2 in the 
target domain. Each path in this MT2 in the target represents 
a piece of transferred knowledge, and thus a single piece 
of knowledge from the source may result in an exponential 
number of clauses for target.

This behavior of LTL has three issues: (1) MT2 , as gen-
erated by the naive LTL algorithm during knowledge con-
struction, represents huge amount of information concisely 
while compromising on real-time interpretability, (2) only 
a small fraction of this exponential set is representative of 
“good clauses” (those that perform well on the available 
target data), and (3) the small amount of available training 
data may be unrepresentative of the target domain, and LTL 
tries to overcome this problem by a stochastic refinement 
step which is not guided by experts.

Consequently, we introduce Heuristic based Language-
Bias Transfer Learning (HLTL). In HLTL, we adapt LTL 
to include a utility heuristic (adapted from association rule 
mining literature and is essentially the likelihood) during its 
knowledge construction (building of MT2 ). The likelihood 
of a clause (piece of knowledge denoted in FOL by A → B , 
which is read as “A implies B” ) is computed using Bayes’ 
rule as:

where, P(X) is probability of X given the data. Our objective 
here is to maximize the likelihood (confidence/utility), since 
this signifies clauses which are validated by the available 
target domain data. HLTL utilizes this likelihood to help it 
improve upon LTL in two specific ways: 

1.	 To perform the parameter tying for each generated piece 
of target knowledge

2.	 To help the algorithm pick the most promising branch 
for further exploration/knowledge construction based on 
the current candidate paths

The first way enables the expert E to see the most promising 
configuration of generated knowledge with respect to the 

(2)P(B ∣ A) =
P(A ∧ B)

P(A)
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available data. And the second one enables us to represent 
MT2 construction in an exploitative (given the available 
data), and interpretable way.

Note that selecting a branch to explore involves consid-
ering the best parameter selection for that clause. As this 
can be expensive, we separate the choice of branch selec-
tion from the parameter selection step. This incremental 
construction of knowledge based on evaluating candidate 
branches, and exploring the most promising branch (in the 
absence of guidance), provides a constrained but optimal 
view of the knowledge transfer. Since this is an interactive 
framework, if the expert decides that the implicit behavior of 
the algorithm isn’t optimal (due to noisy target data, restric-
tive constraints from the language bias etc.), then the expert 
can step in to provide guidance and change this implicitly 
wrong, albeit intelligent conditioned on current sources, 
behavior.

3.2 � Types of Guidance

The optimality of the original LTL algorithm depends on 
available target data and the language bias from the source 
knowledge. Therefore, it is necessary to overcome any lim-
iting effect of either of these two influences. Consequently, 
HLTL has a human-guided component. The natural question 
is, what are the interactions necessary in order to overcome 
the limitations? To answer this question, we first list the 
possible limitations. 

1.	 Data available in the original/target can be noisy, and 
thus,

–	 Parameter tying of a particular clause could be poten-
tially wrong/sub-optimal (sub-optimal parameter 
tying). For instance, when transferring a rule about 
coauthor(S1,P2) which models relationship between 
two authors to a domain advisedBy(S2,P2) where 
S2 and P2 denote student and professor respectively 
(even though they are of type person at the high-
est level), one could incorrectly tie the parameters 
between S and P. This can lead to spurious rules as 
the behaviors of the two entities can be different in 
the target domain.

–	 The branch taken to explore further during the incre-
mental knowledge construction is sub-optimal (sub-
optimal branch selection)

2.	 The language-bias from the source acts as a limiting 
factor and therefore HLTL is incapable of generating an 
unknown but effective piece of knowledge (sub-optimal 
knowledge generation). In essence, the inductive bias 
during transfer may limit the search space in the target 
domain. However, an efficient domain expert might pos-
ses the required knowledge. This knowledge could not 
have been considered (or rather explicitly avoided) by 
LTL since it could violate the language-bias constraint.

We now present three interactions to overcome these three 
limitations respectively. The new algorithm is presented in 
Algorithm 3.

–	 “Sub-optimal branch selection”, can be addressed by pro-
viding the expert E with the ability to choose the branch 
to explore instead of or in addition to the the current best 
branch. This interaction is named Explore Branch. This 
interaction increases the weight assigned to a particular 
branch ( wE(b) ) making it more likely to be explored. This 
is shown in lines 8–11 in Algorithm 3.

–	 The case of “sub-optimal parameter tying” can be 
addressed by providing the expert E with the ability 
to modify these tied parameters. Hence an interaction 
named Modify Literal is provided. This interaction alters 
b# from Eq. 1. This is shown in lines 12–14 in Algo-
rithm 3.

–	 For the case of “sub-optimal knowledge generation”, the 
expert E needs to be able to add a path to MT2

T
 that is 

being constructed. This can be done by adding an inter-
action called Add Literal. The result of this interaction 
changes the set of possible branches B. This is shown in 
line 25 in Algorithm 3.

Therefore our final set of interactions consists of {Add Lit-
eral, Modify Literal, Explore Branch} as the possible actions 
an expert E might need. Using these three basic interactions, 
as we show in our experiments, a domain expert will be able 
to guide HLTL to overcome its possible limitations and gen-
erate the best knowledge possible in the target domain, KT , 
while utilizing the benefits of employing transfer learning 
to overcome the dearth of training data in the target domain.
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3.3 � Interface for Guidance During Transfer

To facilitate the natural interaction with the expert who 
guides, the transfer, we built a user interface that we now 
discuss. Given the necessary knowledge about the underly-
ing transfer algorithm employed, and the necessary interac-
tions defined for guiding the transfer if necessary, let us now 
look at the interface that puts all this together to enable this 
interaction in a seamless manner. The layout of the inter-
face is shown in Fig. 3 and has three functional components 
stacked up. 

1.	 The top component is the “visualizer” which consists 
of 2 parts: (1) the left panel, Tree, to show the MT2 con-
struction in real-time, and (2) the right panel, Relational 
Schema, which shows the ontology of the target domain. 
The primary purpose of this component, is to facilitate 
the expert E visualize the current model, and the pos-
sible alternatives/modifications to it (through the ontol-
ogy).

2.	 The middle component is the “informer” aka Alerts. This 
component enables HLTL to convey, in the form of mes-
sages (strings), any information it needs, to the expert E.

3.	 The bottom component is the “controller”. This com-
ponent again consists of two parts: (1) the right panel, 
Expert Control consists of buttons which enable the 
expert E to control the execution of HLTL (by Pausing/
Playing it) in order to interact with it, and (2) the left 

component, Expert Input, enables the expert E to carry 
out interactions depending on their choice of interac-
tion from the Interactions set. The left component is 
dynamic, in that, its temporal contents are determined 
by the choice of interaction; and in a paused state of the 
transfer, multiple interactions can occur before the user 
explicitly chooses to stop interacting (by selecting to 
Play), or if the “interaction time” as predefined in the 
settings of execution is exceeded (this ensures that an 
unresponsive expert E does not cause the process to be 
inefficient).

The interface, particularly the view showing the construc-
tion of the MT2 tree has been designed/implemented to make 
intuitive and real-time understanding of the knowledge con-
struction process to the expert E. There are two important 
features of this interface. 

1.	 View clause utility Relational knowledge consists of 
the domain definitions, and a set of parameter tyings 
among these selected predicates. The parameters reflect 
meaningful instances of the combination and hence, it 
is important to ensure these tyings are optimal. In our 
interface, the expert has an option to View clause at any 
node in the MT2 . It is important to note that this is not a 
part of the Interactions set because this particular action 
does not convey any message from the expert to HLTL. 
This feature just enables the expert to view the clause at 
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any node and add this clause to the final set of clauses if 
deemed necessary by the expert.

2.	 Parameter tying propagation A feature of any tree that 
makes it intuitive is the concept of the parent/child rela-
tionship. To preserve this intuition, once the parameter 
tyings of a node has been determined at the nth level 
of knowledge construction, the exploration of possible 
parameter combinations at its child is constrained with 
respect to the parent’s tied parameters configuration. 
This ensures that all children of the same parent have 
similar configurations (preserving the meaning of a par-
ent node). If the expert determines that the configura-
tion of a parent is sub-optimal and changes it by Modify 
Literal action, this modification is propagated down the 
sub-branch below this node. The expert can alternatively 
add a new node to the tree, which is the same literal, 
but whose parameters are tied as preferred. This uti-
lizes expert efficiently while preserving the sovereignty 
of being a parent, and enables the expert to decide the 
granularity of their input.

Given our description of the interactive LTL method, we 
now turn our attention to evaluation.

4 � Experiments

Our experiments will aim to answer the following questions 
in order to demonstrate the benefits of HLTL. 

Q1	How does HLTL’s performance compare to LTL?
Q2	Does HLTL improve LTL’s time efficiency?
Q3	How much effort does the expert E spend in guiding the 

transfer process?

4.1 � Experimental Setup

We now compare our HLTL approach against LTL by uti-
lizing the same framework used in the transfer experiments 
[11]. Unlike the general practice of Machine Learning, we 

Fig. 3   A snapshot of the interface for HLTL 
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perform 5-fold, 4-fold, and 3-fold cross-validation for each 
of the transfers respectively with 1-fold for training and 
( n − 1 ) folds for testing, as with the original paper. This is 
carried out for all the combinations of the n folds, as in 
the classical interpretation. This allows us to confirm the 

hypothesis of learning from small data sets and demon-
strated the value of the bias introduced by transfer learning 
methods.

4.2 � Domains

We experimented with three pairs of data sets (WebKB ⟺ 
Yeast protein) and (Cora ⟺ IMDb) and (sports domain 
⟺ finance domain) extracted from the NELL database [2].

We perform five transfer tasks as listed below.
Cora ⟺ IMDb The Cora data set was first created by 

Andrew McCallum and later used by Bilenko et al. [1]. Cora 
consists of research publications information, and the goal 
is to predict ���������(�����, �����) i.e., if two instances 
of venues refer to the same conference given ������ , ����� , 
����� , ������������� , ������������ , ������������ etc. 
IMDB data set proposed by Mihalkova and Mooney [14], 
contains predicates like ����� , �������� , ����� , ����� etc. 
The task in IMDb data set is to predict who works under 
whom �����������(������, ������).

WebKB ⟹ Yeast protein The WebKB data set cre-
ated by Craven et al. [3] and later converted by Mihalkova 

Table 3   Learning time for LTL 
and HLTL in seconds

Method WebKB→Yeast Cora→IMDb IMDb→Cora NELL:Sports→
Finance

LTL 652.20 15.30 51.09 114.00
HLTL 2.47 15.26 5.55 3.36

Table 4   Effort spent by expert Method WebKB→
Yeast

Cora→IMDb IMDb→Cora NELL:Sports→
Finance

HLTL + expert 2 11 9 4
Only expert 15 36 15 12

Fig. 4   MSE plot for the experiments. The comparisons clearly dem-
onstrate that the proposed HLTL method is comparable to LTL 
method on minimizing the error

Fig. 5   AUC-ROC plot for the experiments.The results clearly demon-
strate that the proposed HLTL method is comparable to LTL method 
on AUC-ROC

Fig. 6   AUC-PR plot for the experiments. The comparisons clearly 
show that the proposed HLTL method is comparable to LTL method 
in AUC-PR
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and Mooney [14] to contain the category of each web-page 
in a university framework and links between these pages. 
The task here is to predict the particular department of a 
webpage ������������(�������,�������) given predi-
cate like ������� , ���������� , ������ etc. from these web-
pages. The Yeast protein data set [8] obtained from the 
MIPS Comprehensive Yeast Genome Database, includes 
information about location, function etc. and the target is 
proteinClass(protein,class) that associates a protein to a 
class. The Yeast protein data set [8] obtained from the MIPS 
Comprehensive Yeast Genome Database, includes informa-
tion about proteins. The task is to classify these proteins 
given ������������(�������, �����) �������� , �������� etc.

NELL:Sport ⟹ Finance We consider NELL, an online 
never-ending machine learning system [2]. NELL has the 
ability to extract information from online text data, and 
convert this into a probabilistic knowledge base. Here, we 
consider the task of transferring knowledge from Sports 
domain (which consists of a lot of data in NELL, and there-
fore robust knowledge), where the task is to predict whether 
a team plays a sport, to a Finance domain. The target goal is 
to predict the economic sector of a company (data collected 
by web-crawling is minimal).

To compare the performance of these various methods on 
the data sets, we use the following three measures: (1) mean 
squared-error (MSE), (2) area under the ROC curve (AUC-
ROC), and (3) area under the PR curve (AUC-PR). A plot 
for each of these performance measures is shown in Figs. 4, 
5, and 6 respectively. Across all the domains one can observe 
that HLTL achieves a lower MSE and comparable or higher 
AUC ROC and PR. Thus it can be stated that HLTL’s over 
all performance is comparable or better than LTL, answering 
Q1 affirmatively.

While the predictive performances are similar, our 
hypotheses was that this interactive learning will signifi-
cantly reduce the learning time. This can be observed by 
comparing the learning times for LTL and HLTL as shown 
in Table 3. A key observation is that HLTL is superior in 
all the domains. In three of the fpur domains this difference 
is significantly high (in the order of 10×–250× ). It can be 
concluded that HLTL uses the expert interaction efficiently 
to perform transfer in a fraction of LTL’s learning time, thus 
answering Q2 positively.

While the learning time can be significantly reduced, this 
can be wasteful if the expert’s time is significantly high. To 
evaluate the amount of effort spent by expert E, we compare 
the number of interactions an expert performs to completely 
guide the learning algorithm, minus the transfer. These 
results in Table 4 show that constructing knowledge in the 
target in this case can be expensive in terms of expert effort; 
and therefore to answer Q3, the expert spends minimal effort 
when acting as a guide to the transfer process. Please note 
that another potential drawback of not employing transfer 

can be the lack of input to the expert, since any intuition 
available from the data can no longer be exploited.

In summary, it can be concluded that HLTL significantly 
reduces the training time and the effort of the expert without 
sacrificing the performance of the learning algorithm.

5 � Conclusion

We considered the problem of “deep” transfer where the goal 
is to learn to transfer across seemingly unrelated domains. 
To this effect, we built upon our previous work which intro-
duced bias in the search using the language bias from the 
source domain. Specifically, we developed an interactive tool 
that allows for a domain expert to seamlessly interact with a 
transfer learning algorithm. This tool builds on deep transfer 
method and demonstrates superior efficiency compared to 
the original method. Most importantly, it is clear from our 
experiments that the expert’s efforts significantly decrease 
when learning interactively.

There are a few directions to pursue in future. First, we 
plan to rigorously evaluate this tool in different domains. 
In our current approach, the user intervenes and provides 
the necessary inputs. A more interesting direction would be 
to allow the learning agent [17] to query the user actively. 
Allowing for richer forms of human inputs including but 
not limited to preferences, qualitative constraints and even 
partial models may accelerate learning. Extending the tool 
to allow for richer modalities of inputs such as natural lan-
guage text, gestures and direct manipulation of models etc 
can increase the interactive nature of the solution. Finally, 
going beyond transfer learning to allow for sequential deci-
sion making and temporal reasoning tasks/models remains 
an interesting direction.
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