
1 23

KI - Künstliche Intelligenz
German Journal of Artificial Intelligence
- Organ des Fachbereichs "Künstliche
Intelligenz" der Gesellschaft für
Informatik e.V.

ISSN 0933-1875

Künstl Intell
DOI 10.1007/s13218-020-00659-6

Interactive Transfer Learning in Relational
Domains

Raksha Kumaraswamy, Nandini
Ramanan, Phillip Odom & Sriraam
Natarajan

1 23

Your article is protected by copyright and all

rights are held exclusively by Gesellschaft

für Informatik e.V. and Springer-Verlag GmbH

Germany, part of Springer Nature. This e-

offprint is for personal use only and shall not

be self-archived in electronic repositories. If

you wish to self-archive your article, please

use the accepted manuscript version for

posting on your own website. You may

further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)1 3

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-020-00659-6

TECHNICAL CONTRIBUTION

Interactive Transfer Learning in Relational Domains

Raksha Kumaraswamy1 · Nandini Ramanan2 · Phillip Odom3 · Sriraam Natarajan2

Received: 27 September 2019 / Accepted: 15 April 2020
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We consider the problem of interactive transfer learning where a human expert provides guidance to the transfer learning
algorithm that aims to transfer knowledge from a source task to a target task. One of the salient features of our approach is
that we consider cross-domain transfer, i.e., transfer of knowledge across unrelated domains. We present an intuitive interface
that allows for an expert to refine the knowledge in target task based on his/her expertise. Our results show that such guided
transfer can effectively reduce the search space thus improving the efficiency and effectiveness of the transfer process.

1  Introduction

Transfer learning [19] is a formalism inside machine learning
that learns from a source task and transfers the knowledge
(and possibly adapts/refines this knowledge) to a target task.
This is extremely useful in the case where there is a paucity
of training data in the target domain, enabling the exploita-
tion of available knowledge to jump-start the learning pro-
cess. In these methods, a source task is used for learning a
model (or a set of models) that is then transferred to a related
task where learning can be efficient given the bias from the
source model. This technique has been successfully applied
across several problems including classification and sequen-
tial decision-making [12, 20, 22]. While successful, most of
these techniques work with related problems or within a single
domain and do not necessarily transfer across (seemingly)
unrelated domains.

To achieve domain independent transfer, richer repre-
sentations such as relational models, structured representa-
tion such as graphs or first-order logic (FOL) is a minimal
requirement [4, 8, 13, 15]. As a motivating example, con-
sider the NELL system [2] that reads the web. Currently,
NELL is well-versed in the sports domain, having learned

several rich rules about sports organizations. To transfer
the acquired knowledge to a different domain, say financial
organizations, it is imperative to use a rich representation
that allows modeling the objects, their relations and the
uncertainty that inherently exists in both domains.

Two different approaches have been applied for cross-
domain transfer based on first-order probabilistic methods.
The first set of approaches [4, 8] employ second-order logic
to model regularities between seemingly unrelated domains.
The inherent assumption is that these domains possibly share
a common sub-structure that can be exploited using higher-
order logic. The second set of approaches [13, 15] aims to
find an explicit mapping of predicates using local search
methods. Both these approaches employ the probabilistic
logic methods of Markov logic networks (MLNs) to capture
the source domain knowledge.

Following the second approach, recently, we proposed
a transfer method for relational data that uses search bias
(language bias) from a source domain to accelerate learning
in the target domain [11]. Inspired by the research in Induc-
tive Logic Programming (ILP) [5], this approach performs
“type-matching” that compares the types, analogous to ILP’s
modes, between two predicates.1 Type-matching compares
the types of the arguments in the predicates of the source and
target domain to identify potentially similar objects across
the domains. Once the match is obtained, we perform a
type-based tree construction that allows our method to con-
struct the clauses in the target domain. This matching of the
predicates based on types and the construction of the initial

 *	 Nandini Ramanan
	 Nandini.Ramanan@utdallas.edu

1	 Computing Science, University of Alberta, Edmonton,
Canada

2	 Computer Science, University of Texas at Dallas,
Richardson, USA

3	 Georgia Tech Research Institute, Georgia Institute
of Technology, Atlanta, USA

1  Note the difference between modes in ILP and modes of probability
distributions. Modes inside ILP define the argument types of a predi-
cate and help in the inductive search of the rules.

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00659-6&domain=pdf

	 KI - Künstliche Intelligenz

1 3

knowledge in the target domain can be seen as introduction
of a language-bias for the target domain. Therefore, this
algorithm is called language-bias transfer learning (LTL).

While successful, LTL has a few significant issues: (1) it
can potentially introduce hundreds of (probabilistic) rules in
the target domain from a single source domain rule. In our
prior work, the domain expert was used to refine the target
domain rules . It is unreasonable to expect a domain expert
to vet these large number of rules. (2) Many of these rules
are potentially trivial/non-optimal w.r.t. the target domain
data. Consequently, the burden on the expert in vetting out
the rules after learning appears to be cumbersome. (3) The
parameter tying aspect (where objects of similar types share
the parameters) can be sub-optimal since the domains can
be drastically different. There is a need to allow a human to
interactively guide this process to learn optimal parameters.

To alleviate this issue, we introduce a novel interactive
transfer learning approach that builds on the previous trans-
fer method. The key difference w.r.t LTL is that we do not
wait until the completion of the transfer process to solicit
expert input. Instead, the expert interacts with the algorithm
as the algorithm performs the search through the space of
the rules. The expert has the ability to guide the search by
pruning out seemingly inaccurate parts of the search space
or could potentially introduce a new path for search or even
instantiate particular variables of predicates as needed.

To facilitate seamless interaction, we also developed an
interface that presents the expert with the current search
process and accepts inputs from the expert in terms of add-
ing a predicate, modifying it or suggesting a new branch to
explore for the search. Given the interaction with the user,
we develop a utility based heuristic method that chooses
the optimal path to explore during transfer in the absence
of expert input.

In this paper, we make the following contributions: (1)
we introduce a novel framework that allows the expert to
guide the transfer learning algorithm, (2) we define a robust
utility based optimization problem that allows for efficient
exploration in a new domain, (3) we design an intuitive
interface that allows for seamless expert interaction, and (4)
we empirically show that this method allows for much more
efficient search than the original transfer method.

The rest of the paper is organized as follows—after
reviewing the background on probabilistic logic models,
we present the necessary details of LTL algorithm to make
this work self-contained. We then discuss our interactive
approach. Next, we present our empirical evaluation across
four transfer tasks before concluding by outlining areas of
future research.

2 � Background and Prior Work

2.1 � Background: Probabilistic Logic Models
and Transfer Learning

Probabilistic Logic Models (PLMs) employ FOL for repre-
senting complex structure, and probability theory for mod-
eling uncertainty. The advantage of PLMs [7] is their capac-
ity to succinctly represent probabilistic dependencies among
the attributes of different related objects, leading to compact
representations of learned models. We consider two kinds of
models in this work: undirected models that use weights and
directed models that use probability distributions.

One of the most popular PLMs is Markov logic net-
works (MLNs) [6]. An MLN consists of a set of formulas
in first-order logic and their real-valued weights, {(wi, fi)} .
Together with a set of constants, we can instantiate an MLN
as a Markov network with a node for each ground predicate
(atom) and a feature for each ground formula. All ground-
ings of the same formula are assigned the same weight,
leading to the following joint probability distribution over
all atoms:P(X = x) = 1

Z
 exp

�∑
i wini(x)

�
 , where ni(x) is the

number of times the ith formula is satisfied by a possible
world x and Z is a normalization constant (as in Markov
networks).

On the other end of the spectrum are directed models
such as Bayesian Logic Programs (BLPs) [9] that employ
conditional distributions for every clause (primarily horn
clauses). The distributions, due to multiple instances of the
same rules and due to multiple rules, are combined using
combination functions [16] that combine multiple probabil-
ity distributions into a single distribution. For the purposes
of this work, it is sufficient to realize that the use of weights
and probabilities are two different ways of softening hard
FOL clauses.

While there is significant research in learning these
parameterized rules, especially for MLNs [10], these meth-
ods assume the presence of large amounts of training data.
For learning with minimal data, previously mentioned trans-
fer learning methods that employ PLMs are closely related
to our work. Specifically, the TAMAR algorithm [13] and
its extension SR2LR [15] are quite similar in spirit. TAMAR
maps a source MLN to a target MLN using a concept called
consistent-type mapping which essentially maps one source
type to one target concept. SR2LR on the other hand trans-
fers clauses with a small number of predicates (short-range
clauses) from the source domain to develop longer-range
clauses in the target domain. Other algorithms such as DTM
[4] and TODTLER [8] use MLNs to create a second-order
representation from the source that is then used to instanti-
ate clauses in the target domain. While quite effective, these
methods assume a hyper-parameter that allows them to

Author's personal copy

KI - Künstliche Intelligenz	

1 3

facilitate the transfer. In contrast, LTL requires source FOL
clauses (which provide the language bias), and the target
domain’s relational structure. Our results show that target
domain data can help refine this bias to learn a more accu-
rate model.

2.2 � Prior Work: Language‑Bias Transfer Learning

Our previous work [11] introduced a transfer learning
approach (called LTL) using the language bias from the
source domain to build candidate clauses (first-order rules)
in the target domain of interest. The candidate clauses could
then be scored based on the data and refined to generate
more accurate clauses, hence accounting for differences
between the source and target domains. Unlike previous
work on transfer learning which used second-order logic to
find patterns in the source to ground in the target domain [4,
8], the key idea is that LTL makes use of the basic search
operations of Inductive Logic Programming (ILP) [5] to
perform similar searches in the target domain as would be
performed to build the source knowledge.

In ILP, given the definition of the input, we perform a
greedy search through the space of possible theories, declar-
atively, by a set of mode definitions to guide the search pro-
cess. Following the popular ILP system like ALEPH [21],
we start with a bottom clause, variablize the ground state-
ments and successively add/replace literals that optimizes
the likelihood of a theory based on the data. Consider the
following example where a professor is likely to coauthor
with his/her students:

In ILP, this source clause is built in the following steps,
given that prof(per1) is the head:

–	 Add predicate with 1 argument matching with the head
–	 Add 2 predicates with 1 argument matching previous

predicate

When transferring this to the problem of predicting the boss
of a person, the following clause could be constructed:

Notice how the structure (the flow of tied parameters) in
the target domain clause is the same as in the source domain
clause. While this clause seems reasonable, it is likely that
many possible clauses exist in the target domain that satisfy
the structure constraint imposed by a single source clause.
LTL [11] represents the space of possible matches between
source and target domain as a matching-type tree ( MT2 ).
Following our original work [11], a MT2 can be defined as,

auth(per1,ppr1), auth(per2,ppr1), stud(per2) ⇒ prof(per1)

proj(per1,proj1), proj(per2,proj1), employee(per2) ⇒ boss(per1)

Definition 1  MT2
node

 —a node of an MT2 is a predicate with
its variables assigned as a “+”/“−” type for each argument.

Definition 2  MT2
edge

—an edge of an MT2 is labeled with two
parts. The first represents the types in the lower-level MT2

node

that the edge is connected to which are shared with the
query. The second represents the number of variables that
are shared among the two MT2

node
 s connected by this edge.

Given the definitions of the nodes and edges, a MT2 can
now be defined as,

Definition 3  MT2 —a matching-type tree ( MT2 ) is a tree
rooted at the query MT2

node
 and consists of MT2

node
 s and

MT2
edge

s.

Figure 1-left, is the source tree, given as MT2
S
 , represents

the set of rules to predict ��������� relation in the univer-
sity domain.2 For the target domain, the tree presented in
Fig. 1-right is target search tree, given as MT2

T
 with rules for

����������� prediction. An example of this transfer from
a university domain to a movie domain, as shown in Fig. 1,
represents all of the possible type-matchings from the root
node to any predicate in the target domain. The types refer
to the possible parameter types that can be matched from
the source clause to types in the target domain. The flow of
instances of these types in a clause is often referred to as
parameter tying, and this serves as the building block for the
language-bias obtained from the source for transfer.

The key idea is that the query workedUnder in the tar-
get domain matches with query advisedBy in the source
domain. The predicate professor has one argument with type
(denoted by +p ) that matches with its query advisedBy. Cor-
respondingly, in the target domain, the predicate director
matches with its query workedUnder (with a type +p present
in both). To predict the relationship workedUnder in the tar-
get domain, LTL searchs over these parameter types in the
source domain to construct clauses with a similar structure
in the target domain. For brevity, we present only a part of
the MT2

T
 tree on the right side of the figure. The paths with

the cuts (!) in MT2
T
 match a rule in MT2

S
 of the source domain

(for instance !(R2)). As shown in Fig. 2, at first LTL uses the
source clauses to create MT2

S
 . This MT2

S
 acts as a language

bias to create the possible search tree MT2
T
 for each query

predicate given the target domain description (predicates).
This is similar in spirit to the mode-directed path finding
algorithm of Ong et al. [18]. MT2

T
 is then further pruned

based on MT2
S
 . Finally resulting paths in MT2

T
 are converted

to clauses. As part of refinement (both probabilistic and

2  We use the subscripts S to denote the source domain and T, the tar-
get domain respectively.

Author's personal copy

	 KI - Künstliche Intelligenz

1 3

theory), LTL can add or delete predicates in the clauses to
obtain a more accurate set of clauses for the target domain
queries.

Algorithms 1 and 2 present two primary components of
Language-bias transfer learning. The GenMatches function
in Algorithm 2 is called for every path in MT2

S
 by the Per-

formTransfer function in Algorithm 1 to construct the set of
MT2

T
 paths that would form the target domain clauses, such

that the MT2
T
 paths will have similar edge parameters as that

of the MT2
S
 path. Note that LTL incrementally grows the

search tree in the target domain and stops on type matching
constraint violation thus improving the learning efficiency.
Tables 1 and 2 present some sample transferred clauses and
refined clauses respectively.

Fig. 1   Examples of a type-based matching between the UW-CSE and IMDb datasets. It represents the flow of types which is shown with colors.
We present only a part of the search tree MT

2 for brevity. Paths in the tree representing clauses are shown as shown as !(Ri). Best viewed in color

Fig. 2   LTL takes as input the
source clauses and the target
domain description and gener-
ates the MT

2 trees. Then, our
transfer learning approach
creates clauses in the target
domain, and refines them to
output the final model

Author's personal copy

KI - Künstliche Intelligenz	

1 3

Table 1   Sample clauses in
a source (S) domain and
corresponding transferred
clauses from the target (T)
domain

IMDb ⇒ Cora
 S: director(d) ⇒ workedUnder(a,d)
 T: venue(p1,v1) ⇒ samevenue(v1,v2)
 S: mov(m, p1) ∧ mov(m, p2) ∧ act(p1) ∧ dir(p2) ⇒ workedUnder(p1, p2)
 T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)

WebKB ⇒ Yeast
 S: linkTo(w,wp1,wp2) ⇒ deptOf(wp1, wp2)
 T: interact(a, a) ⇒ proteinClass(a,c)
 S: stud(wp1) ∧ dept(wp2) ∧ linkTo(wd, wp1, wp2) ⇒ deptOf(wp1,wp2)
 T: interact(c,c) ∧ interact(a,d) ∧ interact(c,a) ⇒ proteinClass(a,b)

NELL: Sports ⇒ Finance
 S: teamPlaysTeam(t1 ,t2) ∧ plays(s, t2) ⇒ teamPlaysSport(t1, s)
 T: acquired(c1,c2) ∧ econSectorComp(s1, c2) ⇒ compEconSector(c1, s1)
 S: athletePlaysSport(a, s) ∧ onTeam(a, t) ⇒ teamPlaysSport(t1, s)
 T: bankInCountry(c2, country1) ∧ aquired(c2, c1) ⇒ compEconSector(c1, s1)

Table 2   A sample transferred
clause (T) and refined clause
(R) in three domains

Cora

 T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)
 R: wordVen(v1,w1) ∧ wordVen(v2,w1) ⇒ sameVenue(v1, v2)

Yeast

 T: comp(p,c) ∧ func(p,f) ∧ loc(p,l) ⇒ proteinClass(p,c)
 R: func(p,f) ∧ loc(p,l) ⇒ proteinClass(p,c)

NELL: Finance

 T: bankInCountry(c2, country1) ∧ aquired(c2, c1) ⇒ compEconSector(c1, s1)
 R: bankInCountry(c2, country1) ∧ aquired(c2, c1) ∧ econSectorComp(s1, c2)⇒ compEconSector(c1,

s1)

Author's personal copy

	 KI - Künstliche Intelligenz

1 3

While these domains are clearly similar, our previous
work [11] showed that the LTL algorithm is effective even in
cases where the domains are not obviously similar. However,
a key drawback of the approach is the difficulty in extracting
the best clauses in the target domain, post transfer, especially
when there is not sufficient target data to distinguish among
the clauses. A single source clause can generate hundreds of
matching target clauses in even moderately sized domains.
We propose an interactive approach that is able to visualize
the transfer process so that experts can assist the algorithm
in selecting high-quality target clauses (or prune low-quality
clauses) without having to define them a priori.

3 � Guided Interactive Transfer Learning

To reiterate, our goal is to develop an interactive learning
method that allows for effective transfer. Specifically, we
are interested in leveraging the domain experts in the target
domain to provide us with inductive/search bias that allows
for effective cross-domain transfer. We now describe our
interactive transfer learning algorithm. It consists of three
fundamental components.

1.	 The heuristic adaptation of the transfer learning algo-
rithm LTL, that we call as Heuristic LTL or HLTL

2.	 Set of interactions the expert performs in order to guide
the algorithm; Interactions

3.	 The interface which enables this seamless interaction

We will explore each of these components serially in our
path to constructing the framework. Before presenting each
contribution, First, we will define the problem clearly.

Problem definition The goal is to generate clauses in tar-
get domain, KT , given the clauses from source domain KS .
This is done by taking as input.

1.	 The possible add operations mapped from source to tar-
get (B)

2.	 The guidance provider/expert, E,
3.	 The small amount of target data available, DT.

Formally, our goal is:

(1)

argmax
b∈B,bparams∈b

#

wE(b) ⋅ P(littarget ∣ f (b, bparams))

B− the possible branches at the current node

b#− the parameter tyings possible at the branch b

f (b, bparams)− function to generate the clause body at node b,

with parameter tying bparams

wE(b)− the weight assigned to a branch by the expert

littarget− the target literal of the domain

f (b, bparams) is a function which generates the clause body
at node b, by parsing the path to the node b, and instantiat-
ing node b to have bparams . We now explain this formulation
along with the notion of confidence which determines the
value of P(littarget|f (b, bparams)) in this section.

3.1 � Heuristic Based Language‑Bias Transfer
Learning

We adapt the LTL algorithm presented earlier as our base
transfer algorithm for relational data. Recall that LTL per-
forms transfer by utilizing the language-bias obtained from a
single-piece of source knowledge to construct the MT2 in the
target domain. Each path in this MT2 in the target represents
a piece of transferred knowledge, and thus a single piece
of knowledge from the source may result in an exponential
number of clauses for target.

This behavior of LTL has three issues: (1) MT2 , as gen-
erated by the naive LTL algorithm during knowledge con-
struction, represents huge amount of information concisely
while compromising on real-time interpretability, (2) only
a small fraction of this exponential set is representative of
“good clauses” (those that perform well on the available
target data), and (3) the small amount of available training
data may be unrepresentative of the target domain, and LTL
tries to overcome this problem by a stochastic refinement
step which is not guided by experts.

Consequently, we introduce Heuristic based Language-
Bias Transfer Learning (HLTL). In HLTL, we adapt LTL
to include a utility heuristic (adapted from association rule
mining literature and is essentially the likelihood) during its
knowledge construction (building of MT2 ). The likelihood
of a clause (piece of knowledge denoted in FOL by A → B ,
which is read as “A implies B”) is computed using Bayes’
rule as:

where, P(X) is probability of X given the data. Our objective
here is to maximize the likelihood (confidence/utility), since
this signifies clauses which are validated by the available
target domain data. HLTL utilizes this likelihood to help it
improve upon LTL in two specific ways:

1.	 To perform the parameter tying for each generated piece
of target knowledge

2.	 To help the algorithm pick the most promising branch
for further exploration/knowledge construction based on
the current candidate paths

The first way enables the expert E to see the most promising
configuration of generated knowledge with respect to the

(2)P(B ∣ A) =
P(A ∧ B)

P(A)

Author's personal copy

KI - Künstliche Intelligenz	

1 3

available data. And the second one enables us to represent
MT2 construction in an exploitative (given the available
data), and interpretable way.

Note that selecting a branch to explore involves consid-
ering the best parameter selection for that clause. As this
can be expensive, we separate the choice of branch selec-
tion from the parameter selection step. This incremental
construction of knowledge based on evaluating candidate
branches, and exploring the most promising branch (in the
absence of guidance), provides a constrained but optimal
view of the knowledge transfer. Since this is an interactive
framework, if the expert decides that the implicit behavior of
the algorithm isn’t optimal (due to noisy target data, restric-
tive constraints from the language bias etc.), then the expert
can step in to provide guidance and change this implicitly
wrong, albeit intelligent conditioned on current sources,
behavior.

3.2 � Types of Guidance

The optimality of the original LTL algorithm depends on
available target data and the language bias from the source
knowledge. Therefore, it is necessary to overcome any lim-
iting effect of either of these two influences. Consequently,
HLTL has a human-guided component. The natural question
is, what are the interactions necessary in order to overcome
the limitations? To answer this question, we first list the
possible limitations.

1.	 Data available in the original/target can be noisy, and
thus,

–	 Parameter tying of a particular clause could be poten-
tially wrong/sub-optimal (sub-optimal parameter
tying). For instance, when transferring a rule about
coauthor(S1,P2) which models relationship between
two authors to a domain advisedBy(S2,P2) where
S2 and P2 denote student and professor respectively
(even though they are of type person at the high-
est level), one could incorrectly tie the parameters
between S and P. This can lead to spurious rules as
the behaviors of the two entities can be different in
the target domain.

–	 The branch taken to explore further during the incre-
mental knowledge construction is sub-optimal (sub-
optimal branch selection)

2.	 The language-bias from the source acts as a limiting
factor and therefore HLTL is incapable of generating an
unknown but effective piece of knowledge (sub-optimal
knowledge generation). In essence, the inductive bias
during transfer may limit the search space in the target
domain. However, an efficient domain expert might pos-
ses the required knowledge. This knowledge could not
have been considered (or rather explicitly avoided) by
LTL since it could violate the language-bias constraint.

We now present three interactions to overcome these three
limitations respectively. The new algorithm is presented in
Algorithm 3.

–	 “Sub-optimal branch selection”, can be addressed by pro-
viding the expert E with the ability to choose the branch
to explore instead of or in addition to the the current best
branch. This interaction is named Explore Branch. This
interaction increases the weight assigned to a particular
branch ( wE(b) ) making it more likely to be explored. This
is shown in lines 8–11 in Algorithm 3.

–	 The case of “sub-optimal parameter tying” can be
addressed by providing the expert E with the ability
to modify these tied parameters. Hence an interaction
named Modify Literal is provided. This interaction alters
b# from Eq. 1. This is shown in lines 12–14 in Algo-
rithm 3.

–	 For the case of “sub-optimal knowledge generation”, the
expert E needs to be able to add a path to MT2

T
 that is

being constructed. This can be done by adding an inter-
action called Add Literal. The result of this interaction
changes the set of possible branches B. This is shown in
line 25 in Algorithm 3.

Therefore our final set of interactions consists of {Add Lit-
eral, Modify Literal, Explore Branch} as the possible actions
an expert E might need. Using these three basic interactions,
as we show in our experiments, a domain expert will be able
to guide HLTL to overcome its possible limitations and gen-
erate the best knowledge possible in the target domain, KT ,
while utilizing the benefits of employing transfer learning
to overcome the dearth of training data in the target domain.

Author's personal copy

	 KI - Künstliche Intelligenz

1 3

3.3 � Interface for Guidance During Transfer

To facilitate the natural interaction with the expert who
guides, the transfer, we built a user interface that we now
discuss. Given the necessary knowledge about the underly-
ing transfer algorithm employed, and the necessary interac-
tions defined for guiding the transfer if necessary, let us now
look at the interface that puts all this together to enable this
interaction in a seamless manner. The layout of the inter-
face is shown in Fig. 3 and has three functional components
stacked up.

1.	 The top component is the “visualizer” which consists
of 2 parts: (1) the left panel, Tree, to show the MT2 con-
struction in real-time, and (2) the right panel, Relational
Schema, which shows the ontology of the target domain.
The primary purpose of this component, is to facilitate
the expert E visualize the current model, and the pos-
sible alternatives/modifications to it (through the ontol-
ogy).

2.	 The middle component is the “informer” aka Alerts. This
component enables HLTL to convey, in the form of mes-
sages (strings), any information it needs, to the expert E.

3.	 The bottom component is the “controller”. This com-
ponent again consists of two parts: (1) the right panel,
Expert Control consists of buttons which enable the
expert E to control the execution of HLTL (by Pausing/
Playing it) in order to interact with it, and (2) the left

component, Expert Input, enables the expert E to carry
out interactions depending on their choice of interac-
tion from the Interactions set. The left component is
dynamic, in that, its temporal contents are determined
by the choice of interaction; and in a paused state of the
transfer, multiple interactions can occur before the user
explicitly chooses to stop interacting (by selecting to
Play), or if the “interaction time” as predefined in the
settings of execution is exceeded (this ensures that an
unresponsive expert E does not cause the process to be
inefficient).

The interface, particularly the view showing the construc-
tion of the MT2 tree has been designed/implemented to make
intuitive and real-time understanding of the knowledge con-
struction process to the expert E. There are two important
features of this interface.

1.	 View clause utility Relational knowledge consists of
the domain definitions, and a set of parameter tyings
among these selected predicates. The parameters reflect
meaningful instances of the combination and hence, it
is important to ensure these tyings are optimal. In our
interface, the expert has an option to View clause at any
node in the MT2 . It is important to note that this is not a
part of the Interactions set because this particular action
does not convey any message from the expert to HLTL.
This feature just enables the expert to view the clause at

Author's personal copy

KI - Künstliche Intelligenz	

1 3

any node and add this clause to the final set of clauses if
deemed necessary by the expert.

2.	 Parameter tying propagation A feature of any tree that
makes it intuitive is the concept of the parent/child rela-
tionship. To preserve this intuition, once the parameter
tyings of a node has been determined at the nth level
of knowledge construction, the exploration of possible
parameter combinations at its child is constrained with
respect to the parent’s tied parameters configuration.
This ensures that all children of the same parent have
similar configurations (preserving the meaning of a par-
ent node). If the expert determines that the configura-
tion of a parent is sub-optimal and changes it by Modify
Literal action, this modification is propagated down the
sub-branch below this node. The expert can alternatively
add a new node to the tree, which is the same literal,
but whose parameters are tied as preferred. This uti-
lizes expert efficiently while preserving the sovereignty
of being a parent, and enables the expert to decide the
granularity of their input.

Given our description of the interactive LTL method, we
now turn our attention to evaluation.

4 � Experiments

Our experiments will aim to answer the following questions
in order to demonstrate the benefits of HLTL.

Q1	How does HLTL’s performance compare to LTL?
Q2	Does HLTL improve LTL’s time efficiency?
Q3	How much effort does the expert E spend in guiding the

transfer process?

4.1 � Experimental Setup

We now compare our HLTL approach against LTL by uti-
lizing the same framework used in the transfer experiments
[11]. Unlike the general practice of Machine Learning, we

Fig. 3   A snapshot of the interface for HLTL 

Author's personal copy

	 KI - Künstliche Intelligenz

1 3

perform 5-fold, 4-fold, and 3-fold cross-validation for each
of the transfers respectively with 1-fold for training and
( n − 1 ) folds for testing, as with the original paper. This is
carried out for all the combinations of the n folds, as in
the classical interpretation. This allows us to confirm the

hypothesis of learning from small data sets and demon-
strated the value of the bias introduced by transfer learning
methods.

4.2 � Domains

We experimented with three pairs of data sets (WebKB ⟺
Yeast protein) and (Cora ⟺ IMDb) and (sports domain
⟺ finance domain) extracted from the NELL database [2].

We perform five transfer tasks as listed below.
Cora ⟺ IMDb The Cora data set was first created by

Andrew McCallum and later used by Bilenko et al. [1]. Cora
consists of research publications information, and the goal
is to predict ���������(�����, �����) i.e., if two instances
of venues refer to the same conference given ������ , ����� ,
����� , ������������� , ������������ , ������������ etc.
IMDB data set proposed by Mihalkova and Mooney [14],
contains predicates like ����� , �������� , ����� , ����� etc.
The task in IMDb data set is to predict who works under
whom �����������(������, ������).

WebKB ⟹ Yeast protein The WebKB data set cre-
ated by Craven et al. [3] and later converted by Mihalkova

Table 3   Learning time for LTL
and HLTL in seconds

Method WebKB→Yeast Cora→IMDb IMDb→Cora NELL:Sports→
Finance

LTL 652.20 15.30 51.09 114.00
HLTL 2.47 15.26 5.55 3.36

Table 4   Effort spent by expert Method WebKB→
Yeast

Cora→IMDb IMDb→Cora NELL:Sports→
Finance

HLTL + expert 2 11 9 4
Only expert 15 36 15 12

Fig. 4   MSE plot for the experiments. The comparisons clearly dem-
onstrate that the proposed HLTL method is comparable to LTL
method on minimizing the error

Fig. 5   AUC-ROC plot for the experiments.The results clearly demon-
strate that the proposed HLTL method is comparable to LTL method
on AUC-ROC

Fig. 6   AUC-PR plot for the experiments. The comparisons clearly
show that the proposed HLTL method is comparable to LTL method
in AUC-PR

Author's personal copy

KI - Künstliche Intelligenz	

1 3

and Mooney [14] to contain the category of each web-page
in a university framework and links between these pages.
The task here is to predict the particular department of a
webpage ������������(�������,�������) given predi-
cate like ������� , ���������� , ������ etc. from these web-
pages. The Yeast protein data set [8] obtained from the
MIPS Comprehensive Yeast Genome Database, includes
information about location, function etc. and the target is
proteinClass(protein,class) that associates a protein to a
class. The Yeast protein data set [8] obtained from the MIPS
Comprehensive Yeast Genome Database, includes informa-
tion about proteins. The task is to classify these proteins
given ������������(�������, �����) �������� , �������� etc.

NELL:Sport ⟹ Finance We consider NELL, an online
never-ending machine learning system [2]. NELL has the
ability to extract information from online text data, and
convert this into a probabilistic knowledge base. Here, we
consider the task of transferring knowledge from Sports
domain (which consists of a lot of data in NELL, and there-
fore robust knowledge), where the task is to predict whether
a team plays a sport, to a Finance domain. The target goal is
to predict the economic sector of a company (data collected
by web-crawling is minimal).

To compare the performance of these various methods on
the data sets, we use the following three measures: (1) mean
squared-error (MSE), (2) area under the ROC curve (AUC-
ROC), and (3) area under the PR curve (AUC-PR). A plot
for each of these performance measures is shown in Figs. 4,
5, and 6 respectively. Across all the domains one can observe
that HLTL achieves a lower MSE and comparable or higher
AUC ROC and PR. Thus it can be stated that HLTL’s over
all performance is comparable or better than LTL, answering
Q1 affirmatively.

While the predictive performances are similar, our
hypotheses was that this interactive learning will signifi-
cantly reduce the learning time. This can be observed by
comparing the learning times for LTL and HLTL as shown
in Table 3. A key observation is that HLTL is superior in
all the domains. In three of the fpur domains this difference
is significantly high (in the order of 10×–250× ). It can be
concluded that HLTL uses the expert interaction efficiently
to perform transfer in a fraction of LTL’s learning time, thus
answering Q2 positively.

While the learning time can be significantly reduced, this
can be wasteful if the expert’s time is significantly high. To
evaluate the amount of effort spent by expert E, we compare
the number of interactions an expert performs to completely
guide the learning algorithm, minus the transfer. These
results in Table 4 show that constructing knowledge in the
target in this case can be expensive in terms of expert effort;
and therefore to answer Q3, the expert spends minimal effort
when acting as a guide to the transfer process. Please note
that another potential drawback of not employing transfer

can be the lack of input to the expert, since any intuition
available from the data can no longer be exploited.

In summary, it can be concluded that HLTL significantly
reduces the training time and the effort of the expert without
sacrificing the performance of the learning algorithm.

5 � Conclusion

We considered the problem of “deep” transfer where the goal
is to learn to transfer across seemingly unrelated domains.
To this effect, we built upon our previous work which intro-
duced bias in the search using the language bias from the
source domain. Specifically, we developed an interactive tool
that allows for a domain expert to seamlessly interact with a
transfer learning algorithm. This tool builds on deep transfer
method and demonstrates superior efficiency compared to
the original method. Most importantly, it is clear from our
experiments that the expert’s efforts significantly decrease
when learning interactively.

There are a few directions to pursue in future. First, we
plan to rigorously evaluate this tool in different domains.
In our current approach, the user intervenes and provides
the necessary inputs. A more interesting direction would be
to allow the learning agent [17] to query the user actively.
Allowing for richer forms of human inputs including but
not limited to preferences, qualitative constraints and even
partial models may accelerate learning. Extending the tool
to allow for richer modalities of inputs such as natural lan-
guage text, gestures and direct manipulation of models etc
can increase the interactive nature of the solution. Finally,
going beyond transfer learning to allow for sequential deci-
sion making and temporal reasoning tasks/models remains
an interesting direction.

Acknowledgments  SN gratefully acknowledges the support of CwC
Program Contract W911NF-15- 1-0461 with the US Defense Advanced
Research Projects Agency (DARPA) and the Army Research Office
(ARO). SN & NR gratefully acknowledge AFOSR award FA9550-18-
1-0462. Any opinions, findings and conclusion or recommendations
are those of the authors and do not necessarily reflect the view of the
DARPA, ARO, AFOSR or the US government.

References

	 1.	 Bilenko M, Mooney R (2003) Adaptive duplicate detection using
learnable string similarity measures. In: ACM SIGKDD

	 2.	 Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E Jr, Mitch-
ell T (2010) Toward an architecture for never-ending language
learning. In: AAAI

	 3.	 Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T,
Nigam K, Slattery S (1998) Learning to extract symbolic knowl-
edge from the world wide web. AAAI

	 4.	 Davis J, Domingos P (2009) Deep transfer via second-order
markov logic. In: ICML

Author's personal copy

	 KI - Künstliche Intelligenz

1 3

	 5.	 De Raedt L, Frasconi P, Kersting K, Muggleton S (2008) Proba-
bilistic inductive logic programming. Springer, New York

	 6.	 Domingos P, Lowd D (2009) Markov logic: an interface layer for
artificial intelligence. Synthesis lectures on artificial intelligence
and machine learning

	 7.	 Getoor L, Taskar B (2007) Introduction to statistical relational
learning. MIT Press, Cambridge

	 8.	 Haaren J, Kolobov A, Davis J (2015) Todtler: two-order-deep
transfer learning. In: AAAI

	 9.	 Kersting K, De Raedt L (2001) Bayesian logic programs. arXiv​
:cs/01110​58

	10.	 Khot T, Natarajan S, Kersting K, Shavlik J (2011) Learning
Markov logic networks via functional gradient boosting. In:
ICDM

	11.	 Kumaraswamy R, Odom P, Kersting K, Leake D, Natarajan S
(2015) Transfer learning via relational type matching. In: ICDM

	12.	 Mehta N, Natarajan S, Tadepalli P, Fern A (2008) Transfer in
variable-reward hierarchical reinforcement learning. Machine
Learning

	13.	 Mihalkova L, Huynh T, Mooney R (2007) Mapping and revising
markov logic networks for transfer learning. In: AAAI

	14.	 Mihalkova L, Mooney R (2007) Bottom-up learning of markov
logic network structure. In: ICML

	15.	 Mihalkova L, Mooney R (2009) Transfer learning from minimal
target data by mapping across relational domains. In: IJCAI

	16.	 Natarajan S, Tadepalli P, Dietterich TG, Fern A (2009) Learning
first-order probabilistic models with combining rules. AMAI

	17.	 Odom P, Natarajan S (2016) Actively interacting with experts:
A probabilistic logic approach. In: Joint European conference on
machine learning and knowledge discovery in databases. Springer

	18.	 Ong IM, de Castro Dutra I, Page D, Costa VS (2005) Mode
directed path finding. In: Gama J, Camacho R, Brazdil PB, Jorge
AM, Torgo L (eds) Machine learning: ECML 2005. Lecture notes
in computer science, vol 3720. Springer, Berlin, Heidelberg

	19.	 Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE trans-
actions on knowledge and data engineering

	20.	 Raina R, Ng A, Koller D (2006) Constructing informative priors
using transfer learning. In: Proceedings of the 23rd international
conference on Machine learning. ACM

	21.	 Srinivasan A (2007) The aleph manual
	22.	 Torrey L, Shavlik J, Walker T, Maclin R (2008) Relational macros

for transfer in reinforcement learning. In: Blockeel H, Ramon J,
Shavlik J, Tadepalli P (eds) Inductive logic programming. ILP
2007. Lecture notes in computer science, vol 4894. Springer, Ber-
lin, Heidelberg

Author's personal copy

http://arxiv.org/abs/cs/0111058
http://arxiv.org/abs/cs/0111058

	Interactive Transfer Learning in Relational Domains
	Abstract
	1 Introduction
	2 Background and Prior Work
	2.1 Background: Probabilistic Logic Models and Transfer Learning
	2.2 Prior Work: Language-Bias Transfer Learning

	3 Guided Interactive Transfer Learning
	3.1 Heuristic Based Language-Bias Transfer Learning
	3.2 Types of Guidance
	3.3 Interface for Guidance During Transfer

	4 Experiments
	4.1 Experimental Setup
	4.2 Domains

	5 Conclusion
	Acknowledgments
	References

