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ABSTRACT
We consider the problem of interactive and explainable active feature
elicitation in relational domains in which a small subset of data is
fully observed while the rest of the data is minimally observed. The
goal is to identify the most informative set of entities for whom
acquiring additional relations would yield a more robust model.
We assume the presence of a human expert who can interactively
provide the relations. Thus there is a need for an explainable model.
Consequently, we employ an relational tree-based distance metric
to identify the most diverse set of relational examples (entities) to
obtain more relational feature information on. The model that is
learned iteratively is an interpretable and explainable model that
is presented to the human expert for eliciting additional features.
Our empirical evaluation demonstrates both the efficiency and the
interpretability of the proposed approach.

KEYWORDS
Relational Learning, Interactive ML, Active learning

ACM Reference Format:
Nandini Ramanan, Phillip Odom, Kristian Kersting, and Sriraam Natara-
jan. 2023. Active Feature Acquisition via Human Interaction in Relational
domains. In 6th Joint International Conference on Data Science & Manage-
ment of Data (10th ACM IKDD CODS and 28th COMAD) (CODS-COMAD
2023), January 4–7, 2023, Mumbai, India. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3570991.3571001

1 INTRODUCTION
Feature-value acquisition is a necessary step for deployment of AI
and ML systems. It has long been pursued in standard domains (i.e,
the ones that can be easily described by a flat vector representation)
from the perspective of active learning [11, 36]. Such approaches,
while successful, cannot be directly extended to relational domains
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such as networks or hyper-graphs [3]. For instance, simply acquir-
ing a single feature value, say, a paper for a specific author, say
Mitchell would provide minimal value in learning. On the other
hand, acquiring all the values of the features, say all the papers that
Mitchell has co-authoredwould involve cumbersome data gathering.
Instead, soliciting a specific query such as list of papers that Mitchell
co-authored with Cohen could provide significant information value
when learning a robust classifier. Note that this requires reasoning
at different levels of abstraction – individual feature values, sub-
groups of entities/relations and at the level of the set of all objects.
We consider this type of learning under the paradigm of Statistical
Relational Learning (SRL) [9, 12, 27] that naturally combines the
power of relational representations such as first-order logic with
the ability of statistical/probabilistic models to handle uncertainty.
Specifically, we consider actively acquiring features in relational
data.

While previous research in relational data for active learning
have mainly considered acquiring the labels in the context of link
prediction or relation extraction [3, 15, 18], we consider a different
yet related task of identifying the best entities (examples) to acquire
more feature information on. This is quite natural in settings such
as networks where a subset of the network is fully observed while
in the other part of the network, only the entities are known with
partial relations. For instance, in a clinical study where participants
live in a smart home, one could observe all the social interactions.
However, their outside interactions are unobserved and it is essen-
tial to obtain some of these information when building a relational
classifier (predicting friendships). Our goal is to identify the most
informative set of individuals to build a robust model.

This problems poses several challenges in relational settings that
we directly address – First, a need for active selection strategy of
the elicitable (relational) examples on whom acquiring additional
features will improve the classifier performance. Our hypothesis in
this work is that acquiring diverse set of examples will help improve
generalization. This brings out the second challenge – that of com-
puting distances between relational examples. While in Natarajan
et al. [22], it was easily computed using a divergence metric such as
KL-divergence [14], in relational models, the distance calculation is
not straightforward. Thus we employ the notion of first-order tree-
based distance due to Khot et al. [13] for computing themost diverse
set of examples. Third challenge is that of feature-subspace selection
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for each example, to avoid uninformative/redundant features. Fea-
ture sub-space selection in relational domains is intractable due to
the number of groundings. To mitigate this, inspired by the ideas
of subjective understanding in explanation-based learning litera-
ture [33, 35], we perform inference on the current model based
on the chosen examples from the tree-based distances. This infer-
ence step explains the most important aspects of the current
model to the human learner. Our base learner is a relational
gradient-boosted tree that is combined to a single tree at each ex-
planation step. The algorithm picks the most uncertain part of this
tree for the current example and elicits the additional features from
the human. The final challenge in relational domains is identifying
the appropriate level of abstraction – should the query be over an
instance (an individual co-author), a sub-group (area of research) or
the population (over all the journals)? We note that this challenge
is automatically handled by our explainable, interpretable and
elicitable base learner which is a (combined) relational decision-
tree. Identifying the appropriate paths will automatically present
the set of features to the human expert. The presence of human
expert makes our work distinctly different from the previous active
learning work in relational data. It reinforces the need for explain-
able models and our approach precisely addresses this issue.

To summarize we make the following contributions: (1) We con-
sider and address the problem of training-time feature acquisition
in the presence of a human-expert. (2) We develop the first Feature
Acquisition via Interaction in Relational domains (FAIR) algorithm
that actively solicits features on the most informative examples.
(3) We adapt a relational tree-based distance metric for identifying
the most diverse set of examples. (4) We employ an explainable
and interpretable subjective feature subset elicitation strategy for
relational domains to present the most informative set of features to
the human expert. (5) Our empirical evaluation across two standard
relational domains demonstrate the efficiency, effectiveness of the
FAIR and most importantly, the explainability and interpretability
of the feature selection strategy.

As far as we are aware, this is the first work on SRL models that
can seamlessly incorporate human-in-the-loop while performing the
computationally intensive task of full model-learning with partially
observed examples.

The rest of the paper is organized as follows: we introduce the
necessary background on active learning, relational learning and
explanations before outlining the framework and then discuss the
algorithm. We then present the empirical evaluations before con-
cluding by outlining areas of future research.

2 BACKGROUND
2.1 Active Learning
Active Learning [30] is a paradigmwhich deals with sample-efficient
learning where the assumption is that labels are expensive to ob-
tain. Thus, the goal is to select the most informative instances for
whom labels need to be acquired in order to provide maximum in-
formation to the underlying training model. Typically, techniques
such as uncertainty sampling [17], query by committee [32] etc.
are used to select informative samples. Active learning has been
successfully used with traditional machine learning models rang-
ing from logistic regression [17], support vector machines [39] to

Bayesian networks [37]. It has also been used for more expressive
modes of communication like seeking advice actively for discrimi-
native models such as probabilistic logic models [25] to decision
making tasks like inverse reinforcement learning [24]. There is a
broad set of active learning algorithms that have been applied to
resource-constrained domains [31, 38], however in propositional
setting.

2.2 Active Learning and Active Inference in
Relational Domains

Recent work in active learning in the context of relational or struc-
tured domains have just begun to explore the idea of actively ac-
quiring labels for both learning and collective inference. The fun-
damental difference between active learning and active inference
is when these labels are collected. Related work by Bilgic et al. and
Macskassy [2, 18] focused on acquiring labels for examples that
will improve the accuracy of collective inference by considering
properties of the network structure. These “reflect and correct”
approaches only query for labels while inference. Bilgic et al. pro-
posed ALFNET [3], an active learning method for relational data
that builds on uncertainty sampling, committee-based sampling,
and clustering. ALFNET employs the disagreement score between
three classifiers a). content-only classifier (i.e., trained using at-
tributes of the example in isolation), b). a collective classifier (i.e.,
trained using attributes and network structure) and c) clustering,
and chooses the instance with highest score for labeling.

Kuwadekar et al. proposed a semi-supervised method called
RAL that learns a relational dependency network and relies on an
ensemble of models to select the most informative instances to
query [15]. Their intuition behind this approach was to select these
instances to acquire the label, whose predictions are potentially
most certain, which is opposite of what had been seen previously
in the literature.

Shi et al. proposed a batch mode active learning (BMAL) using
graph-based metrics to define the informativeness of instances [34].
Ji et al. select examples that minimize the total variance of the
distribution of the unlabeled samples along with the the total gener-
alization error [10]. It is worth noticing that all the above techniques
combine the relations (links) information with examples-specific
features to train a classifier and then employ various query strate-
gies for instance selection [3, 15, 34].

2.3 Active Feature Elicitation
Inspired by the success of active learning methods for structured
domains, we consider the novel problem of active feature elicitation
for relational domains. Active feature elicitation is similar to active
learning in the sense that both the settings have budgetary con-
straint and learns from most useful examples. However, they are
different in their assumptions and problem setting because active
learning assumes that labels are expensive whereas AFE makes
the assumption that feature subsets are expensive, the labels being
fully observed for all the examples. Our goal is to select the best
set of examples on whom the missing features (links/attributes)
can be queried on to best improve the classifier performance. The
problem of active feature elicitation for propositional domains has
previously been studied in literature and has been solved using
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various imputation techniques [19, 20, 40] to fill in the missing
feature set and then using traditional active learning.

Kanani et al. [11] proposed a test time elicitation framework
that employed uncertainty sampling on the observed feature sets
in a propositional setting. We propose a training time elicitation
framework that employs a tree based relational distance metric to
compute the distance between the two sets of points to acquire
the most useful relational example and its attributes. Later, Thahir
et al. [36] built on Kanani et al. [11] by adding an extra term to
capture the utility of adding an example to the training set and
was extended to a more generalized setting by Saar-Tsechansky
et al. [29] where even class labels can be missing and acquired in
addition to the feature subsets. A similar task with various costs
for information acquisition and misclassification was addressed by
Bilgic and Getoor [1] by using Probabilistic Graphical models to
model the feature dependencies.

Our work is heavily inspired by the work of Natarajan et al. [22]
on active feature elicitation for propositional domains, whereas
we formulate the first relational active feature elicitation problem.
Also in the Natarajan et al. framework, the elicitable feature set is
fixed apriori and are acquired fully for an example, once deemed
important by the diversity metric. They assumed that the human
input is restricted to only obtaining the full set of features. Conse-
quently, human/domain expertise was not fully exploited. However,
we propose an interactive explanations framework which can facil-
itate a more informed active subspace elicitation for the queryable
relational examples.

2.4 Explanation Based Learning
We propose a robust explanation framework which allows for ex-
plaining why we acquire a feature subset from the elicitable feature
set for the group of queryable examples. As a research question this
is not new and explanation based learning (EBL) systems are devel-
oped and actively pursued in literature [33, 35]. In this type of learn-
ing, EBL computes a generalisation of the training example into
a form that can be applied to solve conceptually similar problems.
The generalization is driven by the explanation of why the solution
worked. Motivated by this, we are the first to explore EBL frame-
works in the context of actively learning with relational domains.
Standard EBL methods often produce overly specific rules that are
shown to impact the generalization performance [21]. Cohen and
Leckie et al. show that by learning simple and approximate control
rules, one can improve the utility of acquired knowledge [6, 16]. To
this effect, we propose to generate explanations for active feature
subset elicitation for queryable examples using an approximate
relational model.

3 FEATURE ACQUISITION VIA INTERACTION
IN RELATIONAL DOMAINS

Traditional ML methods typically assume that all features are ob-
served for each example. However, not all features require the same
amount of effort to obtain. For example, medical applications de-
pend on multiple modalities of data such as imagery, text, family
history, and demographic or epigenetic information. While fam-
ily history may be collected from patients, diagnostic procedures,
which produce different data modalities, vary in terms of their cost

and invasiveness. Therefore, selecting the correct procedure, and
consequently the most informative feature subspace can be crit-
ical in improving decision-making while minimizing the cost of
acquiring features.

3.1 Problem Formulation
Identifying the best subset of features to elicit from the experts is
intractable, especially in relational domains. Instead, we present an
approximate method that first selects a set of examples about whom
to query and then identifies relevant features for those examples.
Formally, we assume that a given dataset,D = D𝑏∪D𝑜 , is composed
of examples with only baseline features (D𝑏 ) and examples which
have additional observed features that have been previously queried
(D𝑜 ). For each previously elicited example, ⟨(x𝑏

𝑖
, x𝑜

𝑖
, 𝑦𝑖 )⟩ ∈ D𝑜 , x𝑏

𝑖

represents the base features while x𝑜𝑖
𝑖

⊆ x𝑒
𝑖
represents any features

from the elicitable set that have been previously acquired for exam-
ple 𝑖 , whose label is𝑦𝑖 . We denote the set of observed features for all
examples as xo. Note that each example may have a different set of
observed features. Interactive feature elicitation iteratively expands
xo in order to improve the model. Thus, the learning problem in
our setting is as follows:

Given: A relational data base D, Relational database schema R,
Query budget 𝐵 and The expert, 𝐸.

To Do: Identify the most useful set of examples y𝑏 ∈ D𝑏 for
which to obtain more attributes or relations x𝑜𝑖

𝑖
⊆ x𝑒

𝑖
in order to

improve classifier performance.
Our proposed approach (FAIR), shown in Figure 1, interatively

identifies a representative subset of query-able examples (1), learns
an explanation model to identify subset of features from elicitable
set (2) and elicits the features from experts (3). Intuitively, FAIR aims
to acquire additional features for a diverse set of examples which
could not be classified using the available features. By prioritizing
examples/features, FAIR efficiently utilizes the resources for feature
elicitation. While previous work focused on propositional distance
measures [22], we faithfully capture the underlying relational data
via a tree-based distance measure to capture the semantic similarity
which uses the path similarity in relational decision trees [13].

The two key components of FAIR are: 1) Example Subset Se-
lection, which relies on a relational distance measure over the
full data, D, to pick the most diverse and informative examples
and 2) Feature Sub-Space Selection, which leverages a relational
base model on the observed data D𝑜 , to generate robust explana-
tion which can be used to do informed feature subspace elicitation
for the queryable examples. The advantage of using a relational
representation is that it succinctly captures probabilistic (noisy)
dependencies among the attributes of different objects, leading to a
compact representation of learned models. We chose SRL for this
task for two key reasons: their ability to handle generalized, noisy
knowledge and data and their capability to produce explainable and
interpretable hypotheses. We will now describe the components of
FAIR in more detail.
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Figure 1: We introduce Feature Acquisition via Interaction in Relational domains, where the feature space is characterized by
base features (x𝑏 ) and elicitable features (x𝑒 ), which are typically more expensive to obtain. FAIR iteratively seeks to identify
examples in D𝑏 that are difficult to classify using the available features alone, and queries the human-in-the-loop to the most
relevant features from the elicitable set for each example to acquire. By identifying the most important examples in D𝑏 for
whom to elicit features, FAIR systematically grows the set of fully-observed examples D𝑜 .

Algorithm 1 Feature Acquisition via Interaction in Relational domains

1: function FAIR(D𝑜 , D𝑏 , R, 𝐵)
2: where ⟨(x𝑏

𝑖
, 𝑦𝑖 )⟩ ∈ D𝑏 , ⟨(x𝑏

𝑖
, x𝑜

𝑖
, 𝑦𝑖 )⟩ ∈ D𝑜 , 𝑅 := Relational schema, 𝐵 := Query budget

3: 𝑐𝑜𝑢𝑛𝑡 := 0 ⊲ Initilization
4: repeat
5: 𝑑 (𝑢, 𝑣){𝑢∈Do },{𝑣∈Db } := RelDistanceMetric(D𝑏 , D𝑜 )
6: 𝜁 (𝑢 𝑗 , 𝑣) :=

∑
𝑖 𝑑𝑖 (𝑢 𝑗 , 𝑣)


Example
Subset Selection.

7: Compute Score :=
∑

𝑗 𝜁 (𝑢 𝑗 , 𝑣)
8: x𝑏 , y𝑏 := GetTopN(Score, 𝑅) , s.t. y𝑏 ⊆ D𝑏

9: F𝑒 := RelationalFGB(D𝑜 )
10: x𝑜 = FeatureSubspaceSelection(F𝑒 , x𝑏 , y𝑏 )

 Feature
Sub-Space Selection.

11: D𝑜 = D𝑜 ∪ x𝑏 ∪ x𝑜 , D𝑏 = D𝑏 − (x𝑏 ∪ x𝑜 )
12: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + |x𝑜 |
13: until 𝑐𝑜𝑢𝑛𝑡 >= 𝐵 ⊲ i.e., budget exhausted
14: return LearnFinalModel(D𝑜 )
15: end function

3.2 Example Subset Selection via Relational
Distance:

FAIR aims to select a representative set of examples about which
to elicit features. Traditional methods leverage distance metrics
(e.g., Euclidean) to quantify diversity. However, these metrics do
not capture the relational structure inherent in the domain. There-
fore, we leverage a tree-based relational distance measure [13],
which compares path similarities across the examples, to select a
representative set of examples.

We learn a series of relational regression trees on the entire
data D, which includes all the baseline and observed examples

(P(𝑦 | x𝑏 , x𝑜 )). Note that observed features are a subset of all
possible elicitable features ( x𝑜

𝑖
⊆ x𝑒

𝑖
). We apply the standard closed

world assumption for all elicitable features which have not been
queried. Given the learned trees, we compute the distances between
examples inD𝑜 andD𝑏 . We use the distancemeasure based on paths
taken by the relational examples, such that the distance between a
pair of relational examples 𝑢 and 𝑣 is given as,

𝑑 (𝑢, 𝑣) =
{
0, LCA(𝑢, 𝑣) is leaf;

exp−𝜆 ·depth(LCA(𝑢,𝑣) ) otherwise

where LCA refers to the least common ancestor of the examples 𝑢
and 𝑣 and parameter 𝜆 = 0.5 ensures the distance decreases as depth
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increases. The relational distance between two examples is inversely
proportional to the lowest common ancestor of the two examples in
the learned tree. Intuitively, examples which share more common
nodes in the tree are more similar. Figure 2 shows a sample first-
order decision tree with examples 𝑢 ≡ advisedBy("S1", "P1")
from the data pool D𝑜 and 𝑣 ≡ advisedBy("S4", "P1") from data
pool D𝑏 . They both have a distance of 1, as both examples differ at
the root node with no common relational attribute.

To calculate the mean distance of an example 𝑣 in Db from every
labeled examples in Do, we define a model to combine distances
from multiple trees and then distances from multiple examples.

The distances from multiple incrementally learned trees are
aggregated, such that 𝜁 (u, v){𝑢∈Do },{𝑣∈Db } = f(d1, d2, d3 ..dt)
where di (u, v) is distance between 𝑢 and 𝑣 based on 𝑖 − 𝑡ℎ tree.
𝜁 (𝑢, 𝑣) combines the tree distances to return the overall distance
between 𝑢 and 𝑣 . Then, we apply instance level combination by
averaging the distances of each example which has no observed fea-
tures with all the examples which have any observed features. We
finally compute the overall metric (Algorithm 1 line[7]) for 𝑣 using
the distances from all the examples {𝑢1, 𝑢2, .., 𝑢𝑛} as, Score(𝑣) =
g(𝜁 (u1, v), 𝜁 (u2, v), .., 𝜁 (un, v)) for 𝑢𝑖 ∈ Do. The combination func-
tion f and g that we use in both levels is mean:

𝜁 (𝑢 𝑗 , 𝑣) =
1
𝑡

𝑡∑︁
𝑖=1

𝑑𝑖 (𝑢 𝑗 , 𝑣)

Score(𝑣) = 1
𝑛

𝑛∑︁
𝑗=1

𝜁 (𝑢 𝑗 , 𝑣)

Using the Score metric, we identify a set of examples to acquire
features by selecting 𝑁 examples that are furthest from examples
with observed features.

3.3 Feature Sub-Space Selection using
Explanations:

Given the selected examples, we now address how to identify the
subset of features to elicit. A key challenge for feature sub-space
selection in the relational setting is there are an intractable number
of potential groundings to consider. For example, in medical tasks
the same lab test could be repeated numerous times, which may
not yield useful information. Such tests can be expensive so it is
important that we select informative features within the budgetary
constraints. The key idea of our approach is to identify the features
which would have the largest impact on the selected examples. We
also present an explanation of the current model for the queried
examples so that a human expert can understand and potentially
guide the feature sub-space selection.

Once we have selected the diverse set of queryable examples
using a relational distance measure, we need to select the features
from elicitable set to be acquired per example ensuring budgetary
constraints. In order to learn an interpretable representation for
elicitation, FAIR leverages RDN-B [23], a relational dependency
learner based on relational functional gradient boosting [8], that has
previously leveraged to solicit knowledge from human experts [26].
It represents each conditional distribution as a set of relational
regression trees (RRT) [4] with first-order logic in the nodes of the
tree and regression values on the leaves. FAIR learns an explanation

model F𝑒 = P(𝑦 | x𝑏 , x𝑜 ), for examples in D𝑜 (Algorithm 1 line[8]).
Using the empirical approach suggested by Craven and Shavlik [7],
we convert F𝑒 , consisting of a series of trees, into a single rela-
tional regression tree F̂𝑒 . The resulting tree, although approximate,
acts as good surrogate for generating accurate explanations of the
underlying model.

Explanations are generated for each examples obtained during
example subset selection. By capturing the paths that these ex-
amples take in F𝑒 , we highlight the elicitable features x𝑒𝑖 that are
potentially reachable for each example. For 𝑖 ∈ b, if 𝑖 reaches a node
𝑣 in the tree branch it takes, such that 𝑣 ∈ x𝑒 then that elicitable
feature and every other elicitable feature in the lower subtree are
reachable as shown in Figure. 3. We group the examples based on
the paths and acquire the relevant features for each cluster of exam-
ples (Algorithm 1 lines[9-11]). For examples 𝑖 = {1, 2, 3} ⊂ b that
are closer together and acquire {Taught_By, TA} ⊂ x𝑒 . Similarly
for examples 𝑖 = {4, 5} ⊂ b, we elicit {Publication}. At this point,
we present the elicitable feature set for the query-able examples
to the human-expert as shown in the Figure 4. However, it must
be noted that incorporating human advice to refine x𝑜

𝑖
for 𝑖 ∈ b is

natural in our framework.
Finally, the selected examples and their elicited features are

added to D𝑜 . We update the budget 𝐵 at this point based on the
number of ground instances of features acquired. As in traditional
active learning, FAIR continues until the query budget is exhausted.

4 EMPIRICAL EVALUATIONS
For our relational distance learner, we used the Relocc algorithm [13].
We learnt 10 first order trees with 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 3 in all our do-
mains. For the fully observed relational model, we used RDN-
B algorithm [23]. We learnt 20 relational regression trees with
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 4 in all our domains. At each active learning itera-
tion, we solicit 10-20 new relational examples until the budget is
exhausted, depending on the domain. In all our domains the ob-
served example set is randomly picked. We compare four different
evaluation metrics: recall, F1-score, AUC-PR and AUC-ROC, that
provide a reasonably robust evaluation in the presence of high class
imbalance, that is prevalent in relational domains.

4.1 Datasets
(1) University of Washington Department of Computer

Science and Engineering data set :
The UW-CSE data set [28] was created from the Univer-
sity of Washington’s Computer Science & Engineering de-
partment’s student database and consists of details about
professors, students and courses from 5 different subareas
of computer science (AI, programming languages, theory,
system and graphics). The task is to predict the AdvisedBy
relation between a student and a professor. We have fixed
train and test set. This data has |D𝑜 | = 47 and |D𝑏 | = 187.
Results are averaged over 5-fold.

(2) Never-Ending Language Learner: Sport data set:
We consider the relational NELL:Sport data set [5], con-
sisting of relations generated by the Never Ending Lan-
guage Learner (NELL). The NELL consisting of information
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Figure 2: Distance Module in FAIR Framework.

Figure 3: Explanations in FAIR Framework.

about players and teams. The task is to predict the rela-
tion TeamPlaysSport i.e., whether a team plays a particular
sport. The data has fixed train and test set. This data has
|D𝑜 | = 119 and |D𝑏 | = 480. We average the results over
3-folds and report them.

4.2 Baselines
In addition to the proposed FAIR approach, we considered three
other baselines:

(1) Randomly choosing points to query and acquiring the full
set of elicitable features such that x𝑜 = x𝑒 . This method is
denoted as RND-ALL;

(2) Randomly choosing points to query and acquiring the fea-
tures for the queryable examples using our proposed active
feature subset elicitation. This method is denoted as RND;

(3) Choosing points using our proposed way of relational dis-
tance metric and acquiring the full set of elicitable features
such that x𝑜 = x𝑒 . This is denoted as FAIR-ALL.

Comparing with these baselines, helps us do an ablation study
which validates the following two important contribution in this

Data Sets Types Predicates neg:pos Ratio
UW-CSE AdvisedBy 12 539.629

NELL Sports TeamPlaysSport 5 2.702
Table 1: Details of relational domains used in our experi-
ments. These data sets have high ratios of negative to posi-
tive examples, which is a key characteristic of relational data
sets.

algorithm: 1) the hypothesis to acquire diverse set of examples
in order to improve generalization. We answer this question by
accessing the gain of FAIR-ALL over RND-ALL 2) Need explainable
feature-subset elicitation for the set of examples than using all the
features for the queryable examples. This is answered by accessing
the gain of FAIR over FAIR-ALL.

4.3 Results
As can be seen from the two domains in Figures 5 and 6, FAIR
outperforms RND and RND-ALL on all domains across all metrics,
specifically in recall where the effect of choosing the most informa-
tive set of examples can have the maximal impact on the classifier
performance. We observe that the variance in recall due to random
selection of examples is high as expected in both the domains for
RND and RND-ALL. However, this effect is minimal for FAIR that
chooses good training examples compared to the baselines. These
relational domains under consideration, are highly imbalanced as
shown in Table 1. However, it can be seen clearly that the proposed
FAIR achieves a recall of over 0.95 in UWCS and 0.8 in NELL Sports
after just a few early iterations, without significantly sacrificing f1
score making it an ideal choice for imbalanced data sets.

Similar results can be observed when comparing FAIR to FAIR-
All in that FAIR consistently does at par or sometimes better than
the strongest baseline FAIR-All for a lower budget, where we ac-
quire all of the features for queryable examples. Between the two
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Figure 4: Commands to interact with explanations in FAIR Framework.

Figure 5: UWCS Results showing AUCPR, AUCROC, F1 and Recall.

domains the gain in performance across all the metrics due explain-
able feature-subset elicitation is significantly more visible in UWCS
which has more features to query from as compared to NELL Sports.
In general, the use of explainable feature-subset elicitation for the
most informative set of examples still appears better and cost effi-
cient than using all the features for the queryable examples. This
helps us validate our two key components of example selection and
explainable feature-subset elicitation in our empirical evaluations.

5 CONCLUSION
We present a novel approach for actively soliciting features in rela-
tional domain through interaction with human expert. At a high
level, our algorithm FAIR identifies instances that are the farthest
from the current set of fully observed relational instances. Our
distance metric uses tree-based distances that are interpretable as
well. Consequently, we employ the successful explanation based
learning methods to select only the relevant feature-subspace for
the informative examples. These are then presented to the expert
with suitable explanations and their feature-values are obtained
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Figure 6: Nell Sports Results showing AUCPR, AUCROC, F1 and Recall.

and added to the current training set. Finally, the model is actively
updated and the process is repeated until our budget is exhausted.
Our empirical evaluations on standard relational domains demon-
strate the efficacy of the proposed approach when compared to
baseline techniques.

More rigorous evaluations on larger domains is the immediate
next step. Extending the algorithm to dynamic domains where
the feature sets can change consistently can result in interesting
insights. Finally, performing large scale human evaluation for ex-
plainability and interpretability remains interesting direction of
future research.
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