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ABSTRACT
Anomaly-based network intrusion detection would appear on the

surface to be ideal for detection of zero-day network threats. Yet

in practice, their often unacceptably high false positive rates keep

them on the sideline in favor of signature-based methods, which

typically detect known threats. We argue that an anomaly-based

network intrusion detection system should not only be special-

ized to a specific class of related threats, but characteristics of the

threat class itself should be utilized when designing both the de-

tection system and structuring the network data to use with the

system. To this end, we take two common network threat classes,

DDoS-as-a-Smokescreen (DaaSS) and SYN flood, and analyze their

characteristics for structure that we can use to specialize anomaly

detection. We partition these threat classes into known behavior

and unknown behavior, leaving the latter open-ended. Through

experimentation on multiple datasets, we show that our proposed

detection system based on this threat partitioning approach is ca-

pable of detecting DaaSS attacks and zero-day SYN flood variants

with very low false positive rates, even in the face of concept drift,

and can do so without having to collect large amounts of benign

network traffic for training.

CCS CONCEPTS
• Security and privacy→ Denial-of-service attacks; Intrusion
detection systems; • Networks→ Network monitoring.
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1 INTRODUCTION
Network intrusion detection systems (IDS) have grown frommodest

roots to an entire industry where network security vendors provide

intrusion detection as a service. These vendors deploy monitors on

their client networks which compare network traffic against known

threats, raising alarms if any traffic matches a threat. Known threats

are typically represented as signatures, leading to signature-based
IDS capable of threat detection with a zero false alarm rate, but

which are blind to unknown, or zero-day, threats. To protect their

clients from zero-day threats, security vendors attempt to discover

them in the wild before an attacker does.

On the surface it may seem appropriate to utilize anomaly-based
network intrusion detection systems to detect zero-day threats.

These IDS do not encompass knowledge of known threats, instead

considering as a potential threat any network trafficwhose behavior

deviates from what the IDS considers ‘normal’, or benign. If an

anomaly is detected, the IDSwill not know if the anomaly is actually

a zero-day threat or benign behavior which happened to deviate.

Due in large part to this unacceptably high false alarm rate,

anomaly-based network intrusion detection systems are rarely used

in practice [27]. Considering that false alarmsmay bring about a loss

of trust in the IDS, and also considering that large security vendors

can often push out new signatures very quickly after zero-day threat

discovery, there needs to be a strong case to use anomaly-based

IDS in the real-world.

We argue that real-world advancement of anomaly-based IDS is

hindered because they are asked to do too much in too broad of a

setting. Detecting threats in this setting is often like searching for a

needle in pile of haystacks. The IDS knows what hay looks like, but

not the needle, searching blindly through the pile, finding anything

that does not resemble hay. The haystack pile may also change over

time, perhaps with new types of hay introduced which the IDS does

not recognize. A signature-based IDS, on the other hand, does not

need to know what hay is, as it knows specific needles.
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The haystack analogy brings to light key issues inherent with

anomaly-based methods which directly contribute to a high false

alarm rate, namely a lack of scoping/direction in the threat search,

and inability to adapt as the benign traffic landscape changes over

time. Additionally, challenges in data procurement necessary for

anomaly detection model training and testing present another key

issue that may eliminate anomaly-based IDS from consideration.

We draw inspiration from the seminal work of Sommer and Pax-

son [27], in which limitations of anomaly-based network intrusion

detection systems are discussed. Sommer and Paxson argued that

for anomaly-based IDS to be practical, the IDS needs to have some

idea of the threats it is supposed to detect. Clearly, if the IDS knows

exactly the threats it should search for, then we can use signature-

based methods, but if we can incorporate partial knowledge of the

threats we want the IDS to detect, then we can perhaps guide the

IDS in the search.

To incorporate partial threat knowledge, we introduce a novel

approach called threat partitioning, which scopes the threat search

both in terms of what specific threats we search for and the time

periods in which we search for them. Threats are grouped into

classes based on known behavior common to them, and for a threat

class that we would like to detect, we only consider its common

behavior as known, leaving the rest as an anomaly detection task.

This constrains anomaly detection to only the time periods in which

a threat’s known behavior is observed.

Procurement of benign traffic required to train anomaly-based

IDS is often a challenge [22, 27]. By utilizing threat partitioning,

we greatly reduce the amount of benign traffic which we need to

collect to only traffic occurring in the presence of common threat

behavior. In other words, the IDS only needs to know what hay

looks like in the presence of a partial needle.

Lastly, hyper-parameters used for anomaly-based IDS sensitivity

tuning may be unintuitive to set. Unfortunately, we may not know

how well the IDS can detect threats with a specific tuning until the

network it is monitoring is attacked. By utilizing network traffic

data which captures concept drift, or variations in behavior over

time, we automatically set sensitivity hyper-parameters in amanner

conducive for maintaining IDS performance in the face of ever-

changing network traffic patterns.

Our key contributions are as follows:

• We address the real-world practicality of anomaly-based IDS

by scoping the threat search using an approach we call threat

partitioning.

• We design an IDS incorporating threat partitioning which

requires minimal benign network traffic to train, and no

sensitivity hyper-parameters to tune.

• We show through experimentation utilizing two real-world

threat classes that our proposed IDS can detect a wide range

of zero-day threats with few false alarms, and can do so in

the presence of concept drift.

The remaining sections are structured as follows. First we dis-

cuss preliminaries and related work in Section 2, including an in-

troduction of the DDoS-as-a-smokescreen and SYN flood threat

classes used as case studies. Section 3 introduces our approach

pipeline, starting with an introduction to threat partitioning in

Section 3.1, structuring of network packet data in Section 3.2, and

threat detection models in Section 3.3. Section 4 dives into our

experiments, including a description of the datasets used and ex-

perimental methodology, with results given in Section 4.3. We then

discuss limitations of our approach in Section 5, and conclude our

work in Section 6.

2 PRELIMINARIES
In the following sections we discuss relevant background, namely

anomaly-based network intrusion detection methods, a data format

useful for model training and testing, and two threat classes we

will use for experimentation.

2.1 Anomaly-Based Network Intrusion
Detection

Network intrusion detection systems have been discussed since at

least the 1980s [5], becoming commonplace in the early Internet

around the turn of the century [25]. One of the first IDS capable

of anomaly detection that saw widespread adoption was Bro [20],

now called Zeek. Zeek uses a set of rules to define benign network

behavior, taking deviations from the rules to be anomalous. As

machine learning methods gained in popularity, anomaly-based

IDS shifted to paradigms in which the representation of benign

network behavior was learned from network data [29]. For the

remainder of this work, we will consider an ‘anomaly-based IDS’ to

comprise a model or ensemble of models learned from data, using

machine learning methods.

Anomaly-based IDS utilizing machine learning methods typi-

cally fall into the category of one-class classifiers (OCC), in which

a single class representation is learned from benign traffic data.

Once trained, the model is capable of binary classification, utilizing

a distance metric to determine if an example is benign or anoma-

lous [15].

Our prior work includes a generalization of OCC for multi-

class classification using hard-clustering [24]. Here, a 𝑘-Prototypes

model [11] is learned from multi-class network traffic data, with

the clusters bounded by a radius to induce a space for anomalous

classification. Masud et. al [18] also utilized a radius as a distance

metric in a 𝑘-Means model used for novelty detection.

Soft-clustering models supporting anomaly detection use like-

lihood values to provide a threshold for anomalous classification.

Application domains where this type of approach has been used

for anomaly detection includes rocket engine diagnostics [17] and

web mining [16].

As previously discussed, a major limitation of anomaly-based

network intrusion detection systems is their false alarm rate. The

key issues we address in this work, among others, were brought to

light in 2010 by Sommer and Paxson [27], who also pointed out the

lack of industry adoption for such systems.

2.2 Network Flow Data
Traffic collected from networks are typically raw packet captures

(PCAP), which lack inter-packet structure needed for model train-

ing. To provide such structure, we utilize a data format which repre-

sents packet data as network flows, called netflows [10]. A netflow

(or simply flow) represents a sequence of packets to and from a pair
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of network nodes, defined as a 5-tuple: source IP address, destina-

tion IP address, source port, destination port, and protocol (TCP for

example). Netflows additionally comprise attributes representing

aggregates for characteristics such as the number of packets that

comprise a flow.

The duration of a netflow is the time interval between the arrival

times of the first and last packet of the flow. A flow begins when

a packet arrives with a unique 5-tuple, and ends when a timeout

criteria is met, either due to traffic inactivity or due to a maximum

duration limit being reached. When a flow ends, subsequent packet

arrivals with the same 5-tuple will form a new flow
1
.

The resulting format is a propositional flat file in which each

row is a netflow, and each column is an attribute value. Netflow

datasets can be used directly for machine learning by mapping each

flow as an example, and each attribute as a feature [9]. Domains in

which netflow datasets have been used to train models include bot

detection on social networks [8], and bot command-and-control

(c&c) characterization [7].

2.3 Threat Class: DDoS-as-a-Smokescreen
A common threat class frequently observed in the wild, DDoS-as-

a-Smokescreen (DaaSS) is an ensemble of two threats that occur

together. The first threat is a Distributed Denial-of-Service (DDoS),

designed to obfuscate a second threat, which may be a zero-day [24].

The earliest known DaaSS attack occurred in 2011 on the Sony

Playstation Network, resulting in the exfiltration of personal data

from approximately 77 million users [30]. This data exfiltration was

not discovered until after the DDoS ceased, due in large part to

mitigation focused on the DDoS itself.

Since the Sony Playstation network attack, DaaSS attacks have

become more prevalent. According to the 2016 Kaspersky Lab Cor-

porate IT Security Risks survey, over half of the respondents (56%)

believed that DDoS attacks they had been subjected to were used

as a smokescreen [14]. StormWall’s H1 2023 DDoS attack report

noted that DaaSS attacks rose 26% from the previous year [28]. Re-

cent DaaSS attacks include the FlexBooker data breach [12], which

specifically involved the exfiltration of personal data.

One reason why DaaSS attacks are particularly effective is they

exploit limited IT resources who may be aware of the smokescreen

but have little choice in fighting the DDoS. They are also relatively

cheap to launch using third parties [13].

2.4 Threat Class: SYN Flood
A SYN flood is class of denial-of-service threats targeting the TCP

protocol’s three-way handshake connection initialization process.

The three-way handshake starts with the client sending a SYN

packet to the server. The server responds with a SYN+ACK packet,

and upon receipt of this SYN+ACK packet, the client replies with

an ACK packet back to the server.

This three-way handshake process is exploited during a SYN

flood, in which many SYN packets are sent to a server by one or

more clients. When the server replies with SYN+ACK packets, the

clients do not respond with ACKs, resulting in increased resource

usage at the server to keep track of the many potential connections.

Eventually the server may exhaust resources and be unable to

1
For TCP flows, the arrival of a SYN packet triggers a new flow.

Time

Duration of observed attack

Known Threat Traffic

Anomaly Search Interval

Benign Traffic... ...
Constrains

Figure 1: Illustration of threat partitioning. Anomaly detec-
tion is reduced to the intervals in which the known threat
traffic is present. The behavioral characteristics of such traffic
may constrain benign traffic that is simultaneously present.

process new connection attempts. SYN floods can be executed using

a single client, spoofing the source address of each SYN packet

sent to make it seem as though the many connection attempts are

coming from different clients.

SYN flood attacks represent one of the oldest denial-of-service,

and are still common today. In 2020, a customer of security vendor

Imperva was hit with a zero-day SYN flood variant. According to

Imperva [2], the SYN packets comprising the flood contained pay-

loads, which is not recognized by RFC-793, the document describing

SYN packet structure [21]. Furthermore, this same attack comprised

spoofed ACK packets, perhaps in an attempt to fake completion of

the three-way handshake.

3 APPROACH PIPELINE
We formally define threat partitioning in Section 3.1, including

requirements we deem are necessary for a threat to be partitioned.

We then discuss network traffic structuring in Section 3.2, and the

detection models which comprise our proposed IDS in Section 3.3.

3.1 Threat Partitioning
Rather than treat a network attack as an atomic, unknown unit, as

is the case with general anomaly detection, we propose to partition

the attack into two components: the known behavior, and unknown

behavior (anomalies). This involves utilizing a model specialized to

detect the traffic which we expect to observe, and if such traffic is

detected, only then attempt to detect anomalies. Therefore, false

positives would be specific to either known threat traffic or anoma-

lous traffic. We expect our IDS to minimize known threat traffic

false positives due to such threat behavior often derived from bots

or malware, leading to more determinism in behavioral patterns.

In addition to this anomaly search interval constraint, we should

consider how benign traffic may be affected by known threat traffic,

for example through bandwidth or resource exhaustion. Consider

a local-area network comprising one router that connects it to the

Internet, providing a single point for all network traffic to flow.

Suppose the local-area network is attacked with a high bandwidth

inbound DDoS. We would expect benign traffic to be affected due

to inbound bandwidth exhaustion, so anything odd, such as a large

outflow of traffic, may point to a DaaSS with data exfiltration rather

than a DDoS in isolation.
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By partitioning known threat behavior from the unknown, we

are also simplifying the anomalies to a subset of the overall threat

behavior. For example, to detect a zero-day SYN flood variant, we

would not need to consider known SYN flood behavior when search-

ing for anomalies, as this would already be detected. With general

anomaly detection, the SYN flood variant in its entirety would need

to be detected as anomalous, even though some of its behavior is

already known.

Figure 1 illustrates characteristics of threat partitioning. As the

known threat traffic constraint on benign traffic is present only

when known threat traffic itself is present, we can consider benign

traffic present outside this interval as being independent. In addi-

tion to reducing the false positive rate by constraining the anomaly

search interval, this independence assumption on benign traffic

implies that we do not need to collect benign traffic in the absence

of any known threat behavior, which we expect to be the vast ma-

jority of the time. This is a huge advantage, as in general collecting

representative benign traffic is a difficult problem [26, 27].

Without threat partitioning, if we wanted to detect data exfiltra-

tion using traditional anomaly detection methods, we could train

an OCC model to detect these and have it running 24/7. In addition

to the enormous amount of benign traffic we would need to col-

lect, it may be difficult in the general case to separate a malignant

data exfiltration from benign data transfers, potentially resulting

in an unacceptable false positive rate. Threat partitioning induces

an interval of time in which to detect anomalies, while potentially

simplifying the benign traffic in which the anomalies should be

searched and potentially simplifying the anomalies themselves.

3.2 Network Packet Data Structuring
Data structuring involves the discovery of relationships and ab-

stractions within the raw packet data (PCAP), and encoding those

relationships in a manner conducive for propositional machine

learning. Using the netflow structure discussed in Section 2.2 as

a base, we would like to encode prior knowledge inherent to the

known threat traffic that we collect.

We observe that distributed threat traffic, for example bot gen-

erated DDoS traffic, comprise flows which will overlap in time as

they arrive at their target.
2
To explicitly represent this inter-flow

temporal relationship, named flow concurrency [23], we first create

a new netflow feature to represent the relationship. Then for any

flow, we count the number of similar flows arriving alongside it

and set this count as the value of the new netflow feature.

More formally, two flows 𝑖 and 𝑗 sharing a common destination

IP address, destination port, and protocol overlap in time if

min[𝑡𝑠 (𝑖) + 𝑑 (𝑖), 𝑡𝑠 ( 𝑗) + 𝑑 ( 𝑗)] > max[𝑡𝑠 (𝑖), 𝑡𝑠 ( 𝑗)], (1)

where 𝑡𝑠 represents a flow’s start time and 𝑑 represents the duration

of a flow at the time of overlap calculation.

As bot generated traffic tends to exhibit similar, deterministic

behavioral patterns, if two flows overlap in time but exhibit wildly

different behavioral characteristics, those flows may be uncorre-

lated, simply by chance having arrived at the same place at a similar

2
This characteristic also appears in single-bot SYN floods when source address spoofing

is employed.

time. To capture inter-flow behavioral similarity, we devise a met-

ric based on netflow aggregate features. We define this similarity

metric as

𝑆𝑖𝑚 = 1 −
(∑︁
𝑎∈a

|𝑎(𝑖) − 𝑎( 𝑗) |
𝑚𝑎𝑥 [𝑎(𝑖), 𝑎( 𝑗), 1]

) /
|a|, (2)

where 𝑎 is an aggregate feature in the set of aggregates a, and |a| is
the number of aggregates in the set. We assume that aggregates are

non-negative. Equation 2 is a normalized L1 norm, and two flows

are considered similar if 𝑆𝑖𝑚 > 𝜖 , where 𝜖 is a threshold value.

For each flow, an aggregate feature is added representing the

count of flows concurrent to it. Flow concurrency may be a useful

relation for many different threat and benign behavioral profiles.

In addition to DDoS traffic similarities, distributed attacks with

deterministic c&c may exhibit this determinism across all nodes

which participate in the attack [7].

While flow concurrency captures an inter-flow relationship,

there may also exist relationships within a single flow. Such intra-
flow relationships can be used to explicitly capture non-standard

behavior which may be observed in threat variants. For example, as

discussed in Section 2.4, SYN packets should not contain a payload,

but yet SYN flood variants may purposely include one to avoid

detection.

A SYN packet’s payload will manifest in the packet byte feature

of a netflow, which as an aggregate, the relationship to which packet

the payload belongs is lost. To explicitly represent the presence

of a SYN packet payload, we add a new feature to represent it. If

the flow’s SYN packet contains a payload, we first subtract the

payload’s size from the packet byte aggregate, then we set as the

new feature’s value the payload size. For SYN packets without a

payload, this new feature’s value will be 0.

Another intra-flow relationship we observe is that a TCP stream

should always begin with a SYN packet. To represent this relation-

ship, we create two additional features, representing a copy of the

netflow’s packet bytes and packet count, respectively. Then for any

TCP netflow which does not start with a SYN packet, the packet

byte and count values of the flow are copied to the two new fea-

tures.
3
Unlike the payload relationship given above, here we do

not modify the original features, as we do not know how large the

missing SYN packet should be. Non-zero values for these two new

features serve to ‘flag’ a TCP flow as being non-standard.

In general, we can represent an intra-flow relationship by finding

the aggregate feature or features which implicitly captures it, creat-

ing a new feature or features to explicitly represent the relationship,

and then computing new values for the newly created feature or

features. While this technique has the potential to greatly increase

the number of features, our netflow structure with the additional

features mentioned here gives us 12 in total, which is still quite low.

Figure 2 illustrates the features in our netflow structure.

3.3 Detection Models
It has been long known in AI and ML literature that ensemble mod-

els routinely perform better than a single model on large tasks such

as recommendation or information retrieval [6, 19]. For example,

3
For TCP streams comprising multiple flows, if the SYN packet is missing from the

first flow, all subsequent flows will also have their packet byte and count values copied.
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Duration Dest Port

Known threat detection model features

Anomaly detection model features

SYN PL Len Bytes BothPkts BothPkts DnPkts UpPkts Both Bytes DnBytes UpBytes Both Conc Flows

Figure 2: Illustration of our netflow structure. ‘Dest Port’ is the netflow’s destination port number. The next six features
refer to the number of packets and total packet bytes which a flow comprises, representing these counts in the upstream and
downstream (‘Up’ and ‘Dn’), and bi-directional (‘Both’). ‘Conc Flows’ is a count representing flow concurrency. The intra-flow
features, ‘SYN PL Len’, ‘Pkts Both’, and ‘Bytes Both’ represent SYN packet payload, and the number of bi-directional packets
and bytes in a TCP stream which does not begin with a SYN packet, respectively.

known threat
detection

anomaly
detection

classify

known
threat

activates

netflow i

iis_anomaly

j
detected

AD(j)
[1..n]

intra-flow
features
omitted

intra-flow
features

added back

Figure 3: High-level illustration of our proposed intrusion
detection system, as a plate model. The known threat detec-
tion model can detect 𝑛 known threat classes, where each
class maps to an anomaly detection model.

learning individual models for specific network traffic classes would

allow for learning expressive representations. Hence, we propose

an ensemble model to handle detection of known and anomalous

threat behavior, comprising one model for known threat detection

of 𝑛 threat classes, and 𝑛 models for anomaly detection.

Figure 3 illustrates our proposed IDS as a plate model, with a

1-to-many relationship between the known threat detection model

and [1..𝑛] anomaly detection models.
4
Here, we have one anomaly

model for each threat class represented in the known threat model.

The steps are as follows: a netflow 𝑖 is passed to the known threat

model with its intra-flow features omitted. If the classification of

netflow 𝑖 is threat class 𝑗 , the respective anomaly model 𝐴𝐷 ( 𝑗) is
activated, and will classify netflow 𝑖 with its intra-flow features

restored. If netflow 𝑖 is not classified as an anomaly by the anomaly

model, then the known threat model’s classification is used.

We omit the intra-flow features from the known threat model as

these features represent behavior not common to a known threat

class. Detecting such behavior is the job of the anomaly model,

4
We use the terms ‘known threat detection model’ and ‘known threat model’ inter-

changeably. Same with ‘anomaly detection model’ and ‘anomaly model’.

hence these intra-flow features are added back to any netflowwhich

is passed to an anomaly model for classification.

For our proposed IDS, all detection models in the ensemble are

Gaussian Mixture Models (GMMs). A GMM is a soft-clustering

model which gives a probability that a netflow belongs to each of

the learned clusters. This is an unsupervised task, with the only

labeling required in the form of a small dataset of representative

netflows from each known threat class, so we can map each one to

the cluster that represents it in the known threat model.

A related model, variational Bayesian GMMs [3], learns the num-

ber of clusters using a Dirichlet process prior and upper bound on

cluster count. This introduces a hyper-parameter to control mix-

ture weights, which ultimately determines which clusters will be

included in the final model. Using a traditional GMM for the known

threat model, we learn one cluster for each known threat behavioral

type, avoiding the need to blindly tune a hyper-parameter.

To support anomaly detection in a GMM model, we compute

the likelihood that a netflow was ‘generated’ from the model. This

is roughly analogous to bounding the clusters using a distance

metric to define an anomalous space. For spherical clusters (and

their hard-clustering analogue) the bound resembles a radius [24].

In our setting we use full covariance, providing variance per feature

and correlations between them, individually learned per cluster.

All GMM models in our ensemble support anomaly detection.

For each model, we compute a threshold 𝜏𝑏 to determine if a netflow

should not be classified to any of the represented clusters by taking

the mean of log-likelihood values of netflow classifications from

an unlabeled validation dataset, and using the three-sigma rule, or

three deviations from the mean, to soften the threshold. As log-

likelihood values strictly decrease as netflows become less likely

to belong to any clusters in the model, we only need to represent

a single threshold value. More formally, a netflow 𝑖 is classified as

not belonging to any cluster in the model if

𝑙𝑙𝑖 < 𝜏𝑏 , (3)

where

𝜏𝑏 = 𝜇 (𝑑𝑡 ) − 3𝜎 (𝑑𝑡 ) . (4)

In Equation 3, 𝑙𝑙𝑖 is the log-likelihood of netflow 𝑖 , and 𝜇 (𝑑𝑡 ) and
𝜎 (𝑑𝑡 ) in Equation 4 are the mean and standard deviation of log-

likelihood values from validation training set 𝑑𝑡 , respectively.

The known threat detection model does not have a cluster rep-
resenting benign traffic, instead comprising 𝑛 clusters where 𝑛 is

the number of unique known threat classes (see Figure 3). Here,

anomaly detection is inverted, with benign traffic classified as the

‘anomalies’. As discussed in Section 3.1, benign traffic collection
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is often a difficult problem, and this approach alleviates having to

collect any benign traffic under nominal network conditions. Thus,

the known threat model is trained only on known threat traffic.

An anomaly detection model comprises clusters representing

known threat behavior that was detected by the known threat de-

tection model, and benign traffic behavior in the presence of the

detected known threat. Therefore, we treat the model as a one-class

classifier, with a cluster count reasonable to capture known threat

and benign traffic behavior. While a cluster count of two is straight-

forward, we can increase this to further capture more fine grained

behavioral nuances for both known threat and benign traffic. Each

anomaly model is trained using known threat traffic from a single

threat class along with benign traffic collected concurrently with it.

A validation dataset used for computing 𝜏𝑏 (Equation 4) for the

known threat model should be overly sensitive to benign traffic to

reduce known threat false positives. Netflows which have a high

likelihood of belonging to the model should give us this desired

characteristic. One such dataset is the training data itself, thus for

the known threat detection model, we use the training dataset as

the validation dataset for computing 𝜏𝑏 . Validation datasets for the

anomaly detection models should comprise relevant known threat

and benign behavior incorporating concept drift. Such behavioral

variations help to push 𝜏𝑏 to a value in which these variations are

not considered anomalous, potentially resulting in a longer service

time before the model needs to be retrained.

Because classification is a discrete-time task, we need some way

to keep an anomaly detection model active when faced with a mix

of incoming known threat and benign traffic. We take a rolling-

window approach in which multiple netflows must classify as a

known threat of the same class within a set duration to keep the

respective anomaly model active. This type of rolling-window may

also help to prevent spurious known threat detection by smoothing

incorrect classifications.

4 EXPERIMENTS
In discussing our experiments, we first describe the datasets used

and experimental methodology. We then present the results, pro-

viding analysis on detection performance for both DaaSS and SYN

flood threat classes.

4.1 Datasets
We curated four datasets for our experimentation, with each one

testing our proposed IDS in different ways. Finding relevant PCAP

data which captures DaaSS or SYN flood variants is inherently dif-

ficult, not to mention that externally curated datasets may contain

zero-days or other unknown anomalies which we may not be aware

of. Thus, all four datasets we curated in-house using a network data

generation framework we developed named eMews [22], enabling

the creation of representative network traffic free from unknown

anomalies. Information about each dataset is given in Table 1.

Network traffic for all four datasets was captured on similar net-

work topology, with the targeted network consisting of an HTTPS

server, SSH server, and two workstations. Benign and threat traffic

originate from hosts which reside in various local-area networks

outside the targeted network. The DDoS attack used as the known

threat behavior for the first two datasets is a reflection attack on the

Scenario

Cap

Dur

KT

Dur

Cn

Drft

# Bn

Flows

# KT

Flows

# An

Flows

NDP-Train 2 h 2 h - 4800 439358 -

NDP-DDoS-1 30 m 30 m N 1101 111051 -

NDP-DDoS-2 30 m 30 m Y 1261 116206 -

NDP-DaaSS-1 30 m 30 m N 1319 120419 7

NDP-DaaSS-2 30 m 30 m Y 1265 123854 21

TS2-Train 1 h 20 m - 1505 2240 -

TS2-DDoS-1 30 m 10 m N 2343 1123 -

TS2-DDoS-2 30 m 10 m Y 2465 1120 -

TS2-DaaSS-1 30 m 10 m N 2222 1120 5

SYN-Train 30 m 1.3 m - 94 135251 -

SYN-Base-1 10 m 1.3 m N 752 140652 -

SYN-Var-1 12 m 1.5 m Y 731 135000 254

SYN-Var-2 12 m 1.5 m Y 749 252 280800

MT-Base-1 2 h

5 m

0.8 m

Y 10101

608

81251

-

Table 1: Netflow scenarios used for experimentation. ‘Cap
Dur’ and ‘KT Dur’ refer to a scenario’s capture duration and
known threat duration, respectively. Duration is measured
in hours (h) or minutes (m). ‘Cn Drft’ refers to concept drift,
with scenarios labeled ‘Y’ incorporating varying network traf-
fic behavior compared to the training scenario. ‘# Bn Flows’,
‘# KT Flows’, and ‘# An Flows’ refer to the number of benign
netflows, the number of known threat netflows, and the num-
ber of anomaly netflows in a scenario, respectively.

HTTPS server of the targeted network. A reflection attack occurs

when an attacker, in this case a botnet, sends low volume traffic to a

target to induce a high volume outbound flood from the target. This

type of behavior was picked as it can resemble legitimate benign

HTTPS traffic, potentially resulting in a more difficult detection

task.

The first dataset, named NDP, was curated in 2018 and contains

scenarios comprising both DDoS and DaaSS attacks [24]. We define

a scenario as a set of netflows parsed from a single PCAP capture,

which comprise our training and testing sets. The underlying threat

of the DaaSS attacks captured is an SSH-based insider data exfiltra-

tion, originating from one or more of the workstations within the

targeted network. NDP scenarios are unique in that the threat is

present throughout the entirety of each scenario.

The second dataset, named TS2, was curated in 2021 and also

captures DDoS and DaaSS attacks [23]. The HTTPS server in the

targeted network for TS2 scenarios is configured to utilize server-

side connection persistence, an often used option for web servers.

Unlike with the NDP dataset, the underlying threat of the DaaSS

attack captured in the TS2 dataset originates externally from the

targeted network. While the training scenario duration is 1 hour,

for training we only use the 20 minute duration in which the known

threat behavior is present, as the rest of the scenario is benign traffic

which we do not need for training. Table 1 lists flow counts within

the known threat duration for all training scenarios.

The third dataset, which we aptly named SYN, captures SYN
floods and variants. The first scenario is a SYN flood which re-

sembles a slightly more aggressive form of the SYN flood used for
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training. The other two are variants: a large payload SYN flood

(SYN-Var-1), and a large payload SYN flood with unsolicited TCP

packets (SYN-Var-2), similar to the SYN flood attack described by

Imperva [2]. The SYN training scenario duration is 30 minutes,

but for training we only use the 1.3 minute duration in which the

known threat behavior is present, as the rest of the scenario is

benign traffic which we do not need for training.

The fourth dataset comprises one scenario, MT-Base-1, which
captures two known threat behaviors: a DDoS of the type found in

the TS2 scenarios, and a SYN flood of the type found in SYN-Base-1.
The DDoS starts about 15 minutes into the scenario, and is present

for 5 minutes. Then, an hour into the scenario, the SYN flood starts,

and is present for 0.8 minutes.

4.2 Methodology
When parsing PCAP data to netflow scenarios, inactive and active

flow timeouts were set to 15 seconds and 60 seconds, respectively, to

match default values commonly used in industrial netflow systems.

Similarity epsilon 𝜖 for flow concurrencywas set to 0.99, based on an

expectation that DDoS flows will not vary much from one another.

Aggregates used to compute flow similarity were the unidirectional

packet count and bytes in the upstream and downstream.

Netflow scenarios NDP-DDoS-1, NDP-DDoS-2, TS2-DDoS-1, TS2-
DDoS-2, SYN-Base-1, SYN-Var-1, and MT-Base-1 were used to mea-

sure IDS performance in the absence of any underlying unknown

threat behavior. These scenarios can give insights into how well

our proposed IDS can discriminate between benign and known

threat traffic. Netflow scenarios NDP-DaaSS-1, NDP-DaaSS-2, TS2-
DaaSS-1, and SYN-Var-2 were used to give insights into detection

performance of unknown threat behavior.

Netflow scenario MT-Base-1 was used to test our proposed IDS

on multiple known threat behavioral types in a single scenario. To

train our proposed IDS, we used both the TS2 and SYN training

scenarios by combining them into a single training scenario.

We set the rolling window of our proposed IDS to 17 seconds,

which will keep anomaly detection active 17 seconds beyond detec-

tion of known threat traffic (classification of known threat netflows).

We selected 17 seconds due to our netflow inactive timeout being

15 seconds, plus an additional 2 seconds to compensate for small

gaps in arrival time between consecutive netflows which time out

due to this inactive timeout.

Initial cluster weights and means for our GMM-based detection

models were computed using k-means++ [1]. Each learned cluster

in the GMM utilized its own covariance matrix, representing per-

feature variance and inter-feature correlation. For the known threat

detection model, we set the number of clusters to learn to match

the count of known threat types represented in our scenarios for

each dataset. For the anomaly detection models, the number of

clusters to learn was set to 15, based on an upper bound of expected

behavioral variations within the known threat and benign traffic.

Comparing our proposed IDS against another IDS required the

other IDS to support both multi-class threat detection with anomaly

detection, and netflow data to represent the inter-flow and intra-

flow relationships. The only IDS we are aware of which meets these

constraints comes from our prior work in DaaSS detection [24]. This

IDS, which wewill callN1, comprises a single hard-clusteringmodel

capable of multi-class threat detection with anomaly detection, and

supports netflow data.

N1was initializedwith 2 cluster centroids to represent the known

threat and benign behavior, using the initialization method intro-

duced in Cao et. al. [4]. A scaling hyper-parameter, 𝛼𝑟 , is used to

adjust sensitivity to anomalies by scaling the radius learned to

bound each cluster. We set 𝛼𝑟 = 1.5, the value which gave the best

results from our prior work [24].

We tested both IDS through all the test scenarios in both datasets

multiple times, taking as the result the best run. The performance

metrics we focused on were those which illustrated a model’s ability

to limit false positives.

4.3 Experimental Results and Discussion
For all scenarios, our rolling window approach kept anomaly de-

tection active in our proposed IDS during the periods of known

threat activity, without any deactivation of anomaly detection dur-

ing those periods. Furthermore, our proposed IDS did not produce

any known threat false positives in the absence of known threat

traffic, implying that it can operate for long periods of time without

false alarms.

Using validation scenarios to automatically set model sensitivity

seemed to work well for keeping false positives down, both in terms

of known threat and anomaly false positives. We further elaborate

on our known threat detection results in the next section, then

discuss anomaly detection results.

4.3.1 Known Threat Behavior Detection. Referring to our threat

detection results in Table 2, our proposed IDS produced no known

threat false positives for all TS2, SYN, and MT scenarios, which is

important as any false alarms here would unnecessarily activate

underlying anomaly detection.

For the TS2 scenarios, our proposed IDS performed similarly to

N1, with N1’s known threat recall slightly higher. In the precision vs

recall tradeoff, we would prefer to miss some known threat traffic

rather than produce false alarms. Specifically in regard to TS2-
DaaSS-1, N1’s benign accuracy dropped below 100%, misclassifying

a benign netflow as an anomaly. This misclassified benign netflow

arrived about 28 seconds after the last known threat netflow, but

N1 cannot constrain when it searches for anomalies, hence the false

alarm.

For the SYN scenarios, our proposed IDS showed strong per-

formance, with zero known threat false positives for all scenarios.

Here, N1 struggled to discriminate between benign and known

threat traffic, manifesting in hundreds of false alarms per scenario

and benign accuracy in the 30% range. Experimenting with different

values for N1’s 𝛼𝑟 scaling hyper-parameter did not help improve the

benign accuracy of the trained model. We also experimented with

using N1 as an OCC model for known threat detection, treating

benign traffic as anomalous in much the same way as our GMM

known threat detection model does. N1 did not show any improve-

ment, suggesting that using a GMM for known threat detection

leads to better discrimination between benign and known threat

traffic.

Focusing on scenario MT-Base-1, our proposed IDS had zero

known threat false positives throughout the scenario, which con-

sidering there were two attacks present, shows that our proposed
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Proposed IDS N1 (𝛼𝑟 = 1.5)

Known Threat Underlying Anomaly Known Threat Underlying Anomaly

Scenario # FP Bn Acc Prc Recall # FP Prc Recall # FP Bn Acc Prc Recall # FP Prc Recall

NDP-DDoS-1 170 84.56% 99.85% 99.32% 0 338 69.3% 99.7% 99.82% 0

NDP-DDoS-2 167 86.76% 99.86% 99.4% 6 370 70.58% 99.68% 99.79% 1
NDP-DaaSS-1 205 84.54% 99.83% 98.64% 9 43.75% 100% 404 69.29% 99.66% 99.73% 1 87.5% 100%

NDP-DaaSS-2 178 86.16% 99.85% 98.48% 10 58.33% 66.67% 390 69.09% 99.68% 99.65% 1 94.44% 80.95%

TS2-DDoS-1 0 100% 100% 97.06% 0 0 100% 100% 99.73% 0

TS2-DDoS-2 0 100% 100% 97.05% 0 0 100% 100% 100% 0

TS2-DaaSS-1 0 100% 100% 96.79% 1 75% 60% 0 99.95% 100% 100% 1 75% 60%

SYN-Base-1 0 100% 100% 99.46% 1 521 29.26% 99.63% 100% 11

SYN-Var-1 0 100% 100% 99.44% 0 100% 100% 501 30.78% 99.63% 100% 5 0% 0%

SYN-Var-2 0 100% 100% 99.45% 2 99.99% 100% 513 31.11% 99.64% 100% 3 0% 0%

MT-Base-1 0 100% 100% 99.21% 0/1 7185 28.87% 91.93% 100% 0
Table 2: Performance of our proposed IDS compared to the N1 hard-clustering model. For scenarios not containing anomalies,
underlying anomaly precision and recall are not applicable. ‘# FP’ represents false positive counts, ‘Bn Acc’ represents benign
accuracy, and ‘Prc’ represents precision.

IDS can keep the known threat false positives at zero in the face

of multiple threats. N1 performed the worst here of any scenario.

While N1 classified all the DDoS threat traffic correctly, 71.13% of

benign traffic was classified as a SYN flood, and suggests that N1

will consistently give false alarms of SYN flood attacks if trained to

detect them.

For the NDP scenarios, while our proposed IDS had a signifi-

cantly lower number of false positives and a significantly higher

benign accuracy than N1, our IDS still produced hundreds of false

alarms. This again suggests that a GMM may be better suited for

known threat detection when compared to hard clustering.

Interestingly, our proposed IDS showed slightly better benign

accuracy on NDP scenarios with concept drift compared to NDP

scenarios without. The known threat detection model may be natu-

rally suited to handling concept drift in benign traffic, as the model

does not know what benign traffic looks like in general. This ties

into model sensitivity, which our approach to automatically set at

training time seems to work well.

4.3.2 Underlying Anomaly Detection Results. For the TS2 scenarios,
both our proposed IDS and N1 performed well with only 1 anomaly

false positive occurring for each IDS in TS2-DaaSS-1. However, N1’s
false positive occurred about 2 minutes after the DDoS had ceased,

which would result in a false alarm. Because our proposed IDS

only searches for anomalies during the presence of known threat

behavior, for this scenario no change in classification would occur

as anomalies are already present.

For the SYN scenarios, our proposed IDS performed very well,

with perfect anomaly classification on SYN-Var-1. The N1 model

struggled on all scenarios, not only with a higher count of anomaly

false positives, but could not detect any anomalies. For scenarios

SYN-Var-1, and SYN-Var-2 in which the variants are represented

as intra-flow features, these features do not seem to have an effect

on N1’s classification, rendering it blind to SYN flood variants.

Furthermore, for all SYN scenarios, all anomaly false positives from

N1 occurred when the SYN flood was not active, resulting in false

alarms.

Focusing on scenario MT-Base-1, our proposed IDS had zero

anomaly false positives when the DDoS was present, and one false

positive when the SYN flood was present. This seems to align with

our results for the TS2 and SYN scenarios which did not contain

anomalies, even though MT-Base-1 was curated separately. N1 has

one anomaly representation and thus cannot separate different

anomaly classes, which here was not an issue as N1 produced no

anomaly false positives.

Our proposed IDS did not perform as well on the NDP scenarios,

with between 6 - 10 anomaly false positives in all but NDP-DDoS-1,
which had zero. Our IDS was able to detect the unknown threat

behavior in NDP-DaaSS-1 and NDP-DaaSS-2, with NDP-DaaSS-1
having perfect recall. Overall N1 performed well with the NDP

scenarios, out-performing our IDS in three out of four scenarios.

Concept drift did not seem to have much effect on our proposed

IDS in terms of anomaly false positives. Also interesting to note is

the duration in which the anomaly detection models were active

did not seem to affect the anomaly false positive counts. In other

words, longer duration of anomaly detection does not appear to

correlate with more false positives. This may suggest that anomaly

false positives tend to originate at the fringes of anomaly detection,

either at the beginning of activation or at the end.

5 LIMITATIONS AND FUTUREWORK
A key point brought up by Sommer and Paxson [27] was the lack

of relevant datasets for anomaly model training and testing, and

difficulty in curating or creating them. This includes issues with

benchmark datasets, such as their age and curation methods. While

there are efforts to develop realistic network data generation meth-

ods specifically to address these issues [22, 26], generating represen-

tative benign traffic is in general a difficult task, hence our approach

of minimizing the amount we need to collect.

The NDP dataset was difficult due to benign and known threat

traffic exhibiting very similar behavioral characteristics. An in-

teresting direction for future work involves additional inter-flow

feature engineering to explicitly represent subtle differences in be-

havior between the known threat class and benign traffic. Ideally,
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any additional inter-flow features should be useful for a wide range

of threat classes.

As the number of threat classes represented in the known threat

model increases, the number of anomaly detection models also

increases. If considering multiple concurrent attacks from threats

belonging to different classes, we would need additional anomaly

detection models to represent the different combinations, possibly

resulting in combinatorial explosion regarding the datasets we

would need to curate. Using network traffic generation techniques

such as eMews may help to make this task more scalable [22].

Our proposed IDS is designed to detect zero-day threats as long

as the zero-day encompasses some known threat behavior. If mali-

cious traffic does not first match any known threat class, it will go

undetected by design. While this is a limitation when compared to

purely anomaly-based IDS, we point out that threat partitioning

provides context to the anomalies detected due to the known behav-

ior observed. With a purely anomaly-based IDS, detected anomalies

may need inspection to determine if they are actually threats. With

our proposed IDS, false positives of anomalies result in the known

threat behavior being incorrectly classified as a base threat class,

when in reality it is a zero-day variant.

6 CONCLUSION
In this work, we developed and demonstrated through experimenta-

tion an anomaly-based network intrusion detection system which

utilizes a method we call threat partitioning to scope the search

for threats, both in terms of the threats being searched for, and the

time intervals in which the IDS searches for them. Our detection

results on two threat classes show promise that our IDS may be

practical for industrial adoption and deployment.
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