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Abstract. The increased use of electronic health records has made pos-
sible the automated extraction of medical policies from patient records to
aid in the development of clinical decision support systems. We adapted
a Probabilistic Logic framework to learn probabilistic rules from clinical
hospital records for the management of physiologic parameters of chil-
dren with severe cardiac or respiratory failure who were managed with
extracorporeal membrane oxygenation. In this preliminary study, the re-
sults were promising. In particular, the algorithm returned logic rules
for medical actions that are consistent with medical reasoning. To our
knowledge, this is the first report of the use of probabilistic logic tech-
niques to automatically extract a medical policy from medical records.
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1 Introduction

The ability to automatically learn physician actions from electronic health records
(EHR) could contribute to improved health care in a number of ways. For exam-
ple, we could automatically discover optimal policies 3 for managing particular
diseases. Moreover, an optimal policy, once discovered, could be compared to a
patient’s actual clinical course; if there is a deviation, physicians could be pro-
vided with suggestions for care. Finally, the ability to extract medical polices
from EHRs would enable predictions of patient prognosis and outcomes.

In this work-in-progress, we investigate use of an inductive probabilistic
learner to elicit weighted (probabilistic) clauses mapping the values of a set of
physiologic parameters to physician actions in critically ill patients with respi-
ratory or cardiac failure. We extracted the information from clinical trajectories

3 We follow the conventional reinforcement learning definition of a policy as a mapping
from states to actions
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documented in the EHR. The goal of this work is not to propose a new prob-
abilistic logic learning framework or to compare different frameworks but to
explore the use of such frameworks in this challenging medical task.

The clinical challenge – discovering a medical policy: Unwanted varia-
tion in medical care, recognized for over forty years, remains a challenge to health
care providers in nearly every specialty[17, 4, 6]. Differences in care are typically
observed between geographic regions, and the particular practice in an area often
correlates with available resources. For example in one study, investigators found
a high correlation between the availability of cardiac catheterization within a lo-
cality and use of angioplasty for managing cardiac disease[2]. It is surprising that
these challenges persist, even as there has been a multiplication of published ex-
pert guideline documents for many medical conditions whose recommendations
are based on well-performed prospective clinical trials[16].

To decrease variability of care, and to converge medical management around
policies conforming to expert guidelines, clinical decision support systems (CDS)
have been devised to render advice to clinicians as they care for patients[13].
Such systems were initially very limited, highly dependent on manual curation,
and their scope was limited to a very few medical conditions[8]. However, the in-
creased use of EHRs has stimulated the development of automated CDS systems
holding promise for providing advice to health care providers in real time.

Required in an automated CDS system is the ability to monitor some aspects
of the patient’s clinical state, as well as the physician actions[8]. Moreover, the
system must possess some notion of optimal care; when clinicians deviate from
the preferred management, or if unexpected events occur warranting a change in
care, alerts or reminders are provided from the system. Whereas early systems
used hard-coded rules to encode clinicians’ knowledge about the optimal policy,
there is growing interest in automatically extracting optimal care patterns by
mining the EHR[12].

Reinforcement learning (RL) is the most commonly reported technique to ex-
tract clinical policies from medical records[5, 15]. Somewhat surprisingly, to our
knowledge, other policy learning schemes such as imitation learning have not
been reported in the medical realm. Most of the reported RL models use deep
neural networks, requiring many patient records for training and a proposition-
alization/embedding technique that could lead to loss of information. Moreover,
these models may be difficult to interpret, complicating the identification of best
medical actions for a given patient state.

A key issue when learning medical policies is that it is non-trivial to construct
a vector-based representation for EHR information. There can be multiple mea-
surements performed over varying time-scales, multiple treatments of different
conditions at the same time-step and differing numbers of observations per sub-
ject. Thus, if standard machine learning methods are used to represent these
complicated data, critical information may be lost.

A more natural representation that allows for modeling these data is first-
order logic. Hence, motivated by the fact that physicians generally make treat-
ment decisions based on physical, laboratory and radiologic findings in a sys-
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tematic manner through a series of (often implicit) ”if-then” decisions, we inves-
tigated the usefulness of learning medical polices as sets of probabilistic clauses
learned in a probabilistic logic framework[3, 14].

2 Problem Description - ECMO patients

Extracorporeal membrane oxygenation (ECMO) is a method of supporting pa-
tients with severe respiratory or cardiac failure. The technique requires place-
ment of large cannulas in the neck or in the heart, and externally circulating the
patient’s blood through a system that oxygenates the blood and removes carbon
dioxide. Reserved for the most critically ill of patients, mortality can be very
high and even among survivors there are frequent treatment complications[7].

Table 1. Study parameters.

Parameter Units
Mean arterial pressure mm Hg.
Heart rate beats/min
Respiratory rate breaths/min
pH none
pO2 mm Hg.
Pressure volume sensor cm H2O
Measured flow ml/kg-min

This study used de-identified med-
ical data abstracted from EHRs for
141 children treated at the Children’s
Medical Center of Dallas who survived
their period of ECMO. The study
was performed in accordance with an
exemption granted by the University
of Texas Southwestern Institutional
Review Board (IRB). The time on
ECMO ranged from 6 to 985 hours,
averaging 174 hours. For each hour of
ECMO bypass, and for from 1 to 24
hours prior to cannulation (15 hours,
on average), 40 physiologic and laboratory parameters were recorded. Not every
parameter was measured each hour; for example, those exclusively associated
with ongoing bypass (such as pump flow) were only recorded while the child was
actually undergoing ECMO support.

We chose seven physiologic parameters thought to be the most useful for
managing the respiratory and hemodynamic status of patients. These are tab-
ulated, with the units of measurement, in Table 1. Parameter values were each
discretized into five bins; the demarcations were based on meaningful physiologic
categories. Thus, for example, the range of Mean arterial pressure (MAP) values
was 50,60,70,80,80.1 (mm Hg.). If the MAP ≤ 50, then the bin was labeled 50,
if MAP > 80, then the assigned bin was 80.1, and if 50 < MAP ≤ 60, the
bin assignment was 60, and so forth. Of course, the bin values and/or units are
different for each parameter.
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3 Probabilistic logic models for learning medical policies
in ECMO patients

Given: EHR data from a set of patients and a set of actions listed in

Table 1.

To Do: Learn (parameterized) policies for specifying the appropriate

medical actions to alter physiologic parameters.

In other words, our aim is to learn from the data when physicians should
initiate therapy to alter the parameters listed in Table 1.

We are inspired by prior work on learning policies using Probabilistic logic
models (PLMs) [10] where (parameterized weighted logical) clauses were learned
from observed trajectories. Broadly known as ”imitation learning”, the key idea
is to learn a distribution over actions such that the policies are as close to
the observed user policy as possible. This particular setting is quite useful in
cases where the reward function is difficult to specify in advance. Imitation
learning algorithms directly optimize the learned policy from trajectories instead
of the expected cumulative discounted reward (as in reinforcement learning); in
many cases this is easier, since when we have observed trajectories, we can avoid
exploration. We consider learning from observations and learn a PLM from data.

Our PLM learning method is based on learning a set of logical regression trees
(TILDE) [1] in a stage-wise manner. This learning method uses an underlying
Inductive Logic Programming (ILP)learner [9] to induce a set of logical clauses
and then fits the weights (parameters) of these clauses. We employ the machin-
ery of gradient-boosting [11] where differences between observed and predicted
probabilities are computed as gradients for the training examples and TILDE
trees are learned at each step to fit these gradients. For more details, we refer to
our previous work [11].

Table 2. Policy actions.

Action
Increase mean arterial pressure
Increase/decrease respiratory rate
Decrease heart rate
Increase/decrease pH
Increase/decease pO2
Increase/decrease pressure volume sensor
Increase/decrease measured flow

Recall that an ILP algorithm ac-
cepts a set of facts, sets of positive and
negative examples of the concepts to
learn, returning logic programs defin-
ing the learned concepts. To learn the
concepts listed in Table 2, we include
as facts the values of each parame-
ter for each subject for each hour; for
instance, ”map(subj1,100,70)” repre-
sents that subject1 at time step 100
hours had a mean arterial blood pres-
sure between 60-70 mmHg. As noted
earlier, not every parameter was mea-
sured each hour. The examples were derived from these facts. If on the consid-
eration of two consecutive measurements, there was a significant change in the
parameter value (defined as a change of at least two bins in the discretized val-
ues), then we generated a positive example. For example, if in addition to the fact
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listed above, there was ”map(subj1,101,80.1)”, indicating a significant increase
in blood pressure after hour 100, the positive example ”mapincr(subj1,100)”
would be generated. Otherwise, we synthesized a (false) negative example.

4 Results

In this preliminary experiment, we set the parameters of the boosted learning
algorithm so that each concept was approximated by a set of 20 relational logic
trees. In these trees, each node consists of a logic clause whose possible truth
values are represented by the edges. Leaves of the tree are labelled with the
weight (and the value subjected to the sigmoid function in parentheses, where
sigmoid(x) = 1/1 + e−x) corresponding to logic rules constructed by following
from the root to the leaf. A representative probabilistic logic tree is presented in
Figure 1.

Fig. 1. Representative probabilistic logic tree for the action to increase mean arterial
pressure (map incr). The prevrrdecr(A,B) refers to a decrease in the respiratory rate
in the previous hour, expressed by the logic rule ∃C | B = C + 1 ∧ resp ratedecr(A, C).

We extracted weighted probabilistic logic rules from this tree; the generated
clauses are listed in Table 3.
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Table 3. Weighted logic rules for mean arterial pressure increase generated from a
representative boosted tree. Variable A represents the subject. Variables B and C
represent the time.

Rule No. Weight Logic rule

1 0.112 mapincr(A, B) ⇐ ¬map(A, B, 60− 70)

2 0.532 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)

3 0.095 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ measured flow(A, B, 100− 150)

4 0.651 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)∧
resp rateincr(A, B)

5 0.821 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)∧
¬resp rateincr(A, B)∧ heart rate(A, B, > 130)∧
[∃C | B = C + 1 ∧ resp ratedecr(A, C)]

6 0.069 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)∧
¬resp rateincr(A, B)∧ ¬[heart rate(A, B, > 130)∧
[∃C | B = C + 1 ∧ resp ratedecr(A, C)]]

7 -0.074 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
¬[measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)]∧
resp rate(A, B, > 40)∧ heart rate(A, B, > 130)

8 0.072 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
¬[measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)]∧
¬[resp rate(A, B, > 40)∧ heart rate(A, B, > 130)]∧
resp rate(A, B, 20− 30)∧ pressure volume sensor(A, B, 0− 10)

9 0.417 mapincr(A, B) ⇐ map(A, B, 60− 70) ∧ ¬[measured flow(A, B, 20− 50)∧
pressure volume sensor(A, B, > 10)] ∧ ¬measured flow(A, B, 100− 150)∧
¬[measured flow(A, B, 50− 100) ∧ resp rate(A, B,≤ 15)]∧
¬[resp rate(A, B, > 40)∧ heart rate(A, B, > 130)]∧
¬[resp rate(A, B, 20− 30)∧ pressure volume sensor(A, B, 0− 10)]
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Owing to the fact that a probabilistic logical concept is represented by a
sum of the 20 weighted trees, it is difficult to interpret the rules generated by
our model. However, by comparing some of the weighted rules within a tree,
we can elicit findings consistent with known clinical practice. When we look at
Rule 1, we see that the weight of the action to increase the mean arterial blood
pressure (map) is 0.112 when the map is not between 60-70 mm hg. (which
is roughly the normal range). However, comparing to Rule 2, we see that the
weight increases to 0.532 when the map is in the normal range, and if the pump
flow is relatively low (20-50 ml/kg-min), and when the pump preload pressure is
relatively high (> 10 cm H2O). The increased weight on this clause, compared
to Rule 1, suggests that in circumstances where the map is normal, but if the
pump flow is low, physicians may elect to initiate treatment to raise the blood
pressure. This is a reasonable treatment maneuver.

We see another example when comparing Rules 5 and 6. The difference be-
tween these rules is in the conjunction of the last two clauses:
heart rate(A, B, > 130)∧ [∃C | B = C + 1 ∧ resp ratedecr(A, C)].
This clause is present in Rule 5 but negated in Rule 6. The markedly elevated
heart rate (> 130 beats/minute) and a recent decrease in respiratory rate are
clinical signs of disease severity. The higher weight on Rule 5 (when these findings
are present) indicates that the presence of these findings will result in a higher
probability of the physician moving to increase the map, which is clinically very
reasonable.

As we add clauses to the rules or negate them, moving down the tree, it is
generally true that the changing weights make clinical sense. That is, a physician
is able to explain why the rule was created. However, it is also appears that some
clauses seem peripheral to the task of deciding whether to increase the arterial
pressure, and would not necessarily be used in the clinical setting. Without
question, our automatic system is able to generate longer, more complicated
probabilistic logic rules and use more (perhaps obscure, and perhaps important)
clinical facts than could a human. Whether such rules will be clinically relevant
and useful in a functioning clinical decision support system is a question requiring
further research.

5 Discussion

We used a probabilistic logic framework to elicit policies for medical manage-
ment of children undergoing ECMO. Our preliminary results provide some hope
that the method can be used to provide interpretable strategies to physicians
managing complicated patients that might be useful in automatic clinical deci-
sion support systems. To the best of our knowledge, this is the first study using
EHR data to learn probabilistic rules governing the management of patients in
the hospital. It can be observed from the rules presented that we include ex-
istential variables (observations recognized previously); simple encodings into a
propositional framework will not suffice for such problems. Instead, a logical
framework is necessary. Also, note the weights/regression values on the leaves.
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This demonstrates the need for a “soft” framework and supports our choice of
PLMs as a natural choice for such modeling tasks.

There are at least a few shortcomings to our study from a clinical perspec-
tive. First, it must be acknowledged that we did not have direct access to the
physician actions, and rather derived them from the measured physiologic pa-
rameters. This complicates our analysis, owing to the fact that we are unable to
distinguish when altered physiologic findings are related to medical care or to the
course of the underlying disease. It is reasonable to surmise that when we have
available the actual physician orders, we will have a cleaner, less noisy, set of
data, perhaps allowing greater success in eliciting the medical policies. A second
shortcoming is that in this study we selected only a small subset of the recorded
parameters- ones thought to be most physiologically significant in the medical
decision-making process. We might obtain better results if we broaden the set of
parameters. Moreover, in our probabilistic boosted logic model experiment, we
discovered policies encoded in multiple regression trees; without question, one
could question whether the trees learned in the boosting algorithm are read-
ily interpretable to physicians managing patients. This is a broader issue; if
weighted logic models such as MLNs/PSL etc., are interepretable, then so are
these boosted rules. However, we acknowledge that weighted logic may not be
as interpretable to domain experts, and there is a need to explore models that
are more explainable and interpretable.

Finally, our technique may provide new insight into which physician actions
contribute to variation in clinical outcome for children undergoing ECMO sup-
port. For example, the most common risks of ECMO include bleeding (related
to the necessary anticoagulation of the patient) and neurologic injury- either an
intracranial hemorrhage or an ischemic event. What is not known is whether neu-
rologic injury risk can be altered by different management schemes. We surmise
that when we evaluate policies for patients partitioned by outcome class (that
is, with or without neurologic event), aspects of the policies may be elicited that
increase complication risk. We leave this to future work. But if such a finding
were confirmed in a clinical study, ECMO outcomes could be improved.
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