Publications
2024
Sidheekh, S., & Tenali, P., & Mathur, S., & Blasch, E., & Natarajan, S., On the Robustness and Reliability of Late Multi-Modal Fusion using Probabilistic Circuits, The 27th International Conference on Information Fusion (FUSION) 2024.
Mathur, S., & Antonucci, A., & Natarajan, S., Knowledge Intensive Learning of Credal Networks, The 40th Conference on Uncertainty in Artificial Intelligence (UAI) 2024.
Mathur, S., & Gadekar, V., & Ramola, R., & Wang, A., & Thiruvengadam, R., & Haas, D., & Bhatnagar, S., & Wadhwa, N., & Group, G.S., & Radivojac, P., & Sinha, H., & Kersting, K., & Natarajan, S., Modeling multiple adverse pregnancy outcomes: Learning from diverse data sources, The 22nd International Conference in Artificial Intelligence in Medicine (AIME) 2024.
Ricks, B., & Tague, P., & Thuraisingham, B., & Natarajan, S., Utilizing Threat Partitioning for More Practical Network Anomaly Detection, In Proceedings of the 29th ACM Symposium on Access Control Models and Technologies (SACMAT) 2024.
Valluru, S.L., & Srivastava, B., & Paladi, S.T., & Yan, S., & Natarajan, S., Promoting Research Collaboration with Open Data Driven Team Recommendation in Response to Call for Proposals, The Thirty-Sixth Annual Conference on Innovative Applications of Artificial Intelligence (IAAI/AAAI-24) (Best Application paper) 2024.
Singh, R., & Prabhakar, N., & Natarajan, S., & Tadepalli, P., Exploiting Relational Planning and Task-Specific Abstractions for Multiagent Reinforcement Learning in Relational Domains, Cooperative Multi-Agent Systems Decision-Making and Learning 2024.
Sidheekh, S., & Natarajan, S., Building Expressive and Tractable Probabilistic Generative Models: A Review, The 33rd International Joint Conference on Artificial Intelligence (IJCAI) 2024.
Sidheekh, S., & Tenali, P., & Mathur, S., & Blasch, E., & Kersting, K., & Natarajan, S., Credibility-Aware Multi-Modal Fusion Using Probabilistic Circuits, 2024.
Mathur, S., & Antonucci, A., & Natarajan, S., Learning Credal Conditional Probability Tables with Qualitative Knowledge, The 2nd Workshop of Deployable AI (DAI) 2024.
Mathur, S., & Sidheekh, S., & Tenali, P., & Blasch, E., & Kersting, K., & Natarajan, S., Credibility-aware Reliable Multi-Modal Fusion Using Probabilistic Circuits, The 2nd Workshop of Deployable AI (DAI) 2024.
2023
Shah, N., & Mathur, S., & Shanmugham, P., & Li, X., & Thiagarajan, R.R., & Natarajan, S., & Raman, L., Neurologic Statistical Prognostication and Risk Assessment for Kids on Extracorporeal Membrane Oxygenation—Neuro SPARK, ASAIO Journal 2023.
Yan, S., & Natarajan, S., & Joshi, S., & Khardon, R., & Tadepalli, P., Explainable Models via Compression of Tree Ensembles, 2023.
Yan, S., & Odom, P., & Pasunuri, R., & Kersting, K., & Natarajan, S., Learning with privileged and sensitive information: a gradient-boosting approach, 2023.
Mathur, S., & Gogate, V., & Natarajan, S., Knowledge Intensive Learning of Cutset Networks, The 39th Conference on Uncertainty in Artificial Intelligence (UAI) 2023.
Sidheekh, S., & Kersting, K., & Natarajan, S., Probabilistic Flow Circuits: Towards Unified Deep Models for Tractable Probabilistic Inference, The 39th Conference on Uncertainty in Artificial Intelligence (UAI) 2023.
Mathur, S., & Gogate, V., & Natarajan, S., Knowledge Intensive Learning of Cutset Networks, The Sixth Workshop On Tractable Probabilistic Modeling (TPM) 2023.
Karanam, A., & Mathur, S., & Sidheekh, S., & Natarajan, S., Bayesian Learning of Probabilistic Circuits with Domain Constraints, The Sixth Workshop On Tractable Probabilistic Modeling (TPM) 2023.
Karanam, A., & Natarajan, S., Test-time active feature selection through tractable acquisition functions, The Sixth Workshop On Tractable Probabilistic Modeling (TPM) 2023.
Yu, P., & Skinner, M., & Esangbedo, I., & Lasa, J.J., & Li, X., & Natarajan, S., & Raman, L., Predicting Cardiac Arrest in Children with Heart Disease: A Novel Machine Learning Algorithm, Journal of Clinical Medicine 2023.
Das, S., & Ramanan, N., & Kunapuli, G., & Radivojac, P., & Natarajan, S., Active feature elicitation: An unified framework, Frontiers in Artificial Intelligence 2023.
Natarajan, S., & Kersting, K., Never Ending Reasoning and Learning: Opportunities and Challenges, Continual Causality Bridge Program at AAAI 2023.
Chu, H., & Ramola, R., & Jain, S., & Haas, D.M., & Natarajan, S., & Radivojac, P., Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population, Pacific Symposium on Biocomputing 2023.
Mathur, S., & Karanam, A., & Radivojac, P., & Haas, D.M., & Kersting, K., & Natarajan, S., Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes, Pacific Symposium on Biocomputing 2023.
Ramanan, N., & Odom, P., & Kersting, K., & Natarajan, S., Active Feature Acquisition via Human Interaction in Relational domains, 6th Joint International Conference on Data Science & Management of Data (CODS-COMAD) 2023.
2022
Karanam, A., & Killamsetty, K., & Kokel, H., & Iyer, R.K., Orient: Submodular Mutual Information Measures for Data Subset Selection under Distribution Shift, 36th Conference on Neural Information Processing Systems (NeurIPS) 2022.
Pagel, K.A., & Chu, H., & Ramola, R., & Guerrero, R.F., & Chung, J.H., & Parry, S., & Reddy, U.M., & Silver, R.M., & Steller, J.G., & Yee, L.M., & Wapner, R.J., & Hahn, M.W., & Natarajan, S., & Haas, D.M., & Radivojac, P., Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women, JAMA Network Open 2022.
Yan, S., & Natarajan, S., & Joshi, S., & Khardon, R., & Tadepalli, P., Explainable Models via Compression of Tree Ensembles, 2022.
Chen, Y., & Natarajan, S., & Ruozzi, N., Relational Neural Markov Random Fields, International Conference on Artificial Intelligence and Statistics (AISTATS) 2022.
Kokel, H., & Natarajan, S., & Ravindran, B., & Tadepalli, P., Dynamic probabilistic logic models for effective task-specific abstractions in RL, The 5th Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) 2022.
Kokel, H., & Prabhakar, N., & Ravindran, B., & Blasch, E., & Tadepalli, P., & Natarajan, S., Hybrid Deep RePReL: Integrating Relational Planning and Reinforcement Learning for Information Fusion, IEEE 25th International Conference on Information Fusion (FUSION) 2022.
Karanam, A., & Mathur, S., & Haas, D.M., & Radivojac, P., & Kersting, K., & Natarajan, S., Explaining Deep Tractable Probabilistic Models: The sum-product network case, The Fifth Workshop On Tractable Probabilistic Modeling (TPM) 2022.
Karanam, A., & Mathur, S., & Haas, D.M., & Radivojac, P., & Kersting, K., & Natarajan, S., Explaining Deep Tractable Probabilistic Models: The sum-product network case, The 11th International Conference on Probabilistic Graphical Models (PGM) 2022.
Skinner, M.A., & Yu, P., & Raman, L., & Natarajan, S., An Anytime Querying Algorithm for Predicting Cardiac Arrest in Children: Work-in-Progress, 20th International Conference in Artificial Intelligence in Medicine(AIME) 2022.
Kokel, H., & Das, M., & Islam, R., & Bonn, J., & Cai, J., & Dan, S., & Narayan-Chen, A., & Jayannavar, P., & Doppa, J.R., & Hockenmaier, J., & Natarajan, S., & Palmer, M., & Roth, D., LARA -- Human-guided collaborative problem solver: Effective integration of learning, reasoning and communication, The Tenth Annual Conference on Advances in Cognitive Systems (ACS) 2022.
Kokel, H., & Natarajan, S., & Ravindran, B., & Tadepalli, P., RePReL: A Unified Framework for Integrating Relational Planning and Reinforcement Learning for Effective Abstraction in Discrete and Continuous Domains, Neural Computing and Applications 2022.
2021
Broeck, G.V.d., & Kersting, K., & Natarajan, S., & Poole, D., An Introduction to Lifted Probabilistic Inference, 2021.
Dhami, D.S., & Yan, S., & Natarajan, S., Bridging Graph Neural Networks and Statistical Relational Learning: Relational One-Class GCN, 2021.
Dhami, D.S., & Yan, S., & Natarajan, S., A Statistical Relational Approach to Learning Distance-based GCNs, Statistical Relational AI (StarAI) Workshop at IJCLR 2021.
Dhami, D.S., & Yan, S., & Kunapuli, G., & Natarajan, S., Non-Parametric Learning of Embeddings for Relational Data using Gaifman Locality Theorem, International Conference on Inductive Logic Programming (ILP) 2021.
Zečević, M., & Dhami, D.S., & Karanam, A., & Natarajan, S., & Kersting, K., Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models, 35th Conference on Neural Information Processing Systems (NeurIPS 2021) 2021.
Kokel, H., & Manoharan, A., & Natarajan, S., & Ravindran, B., & Tadepalli, P., Dynamic probabilistic logic models for effective abstractions in RL, Statistical Relational AI (StarAI) Workshop at IJCLR 2021.
Kokel, H., & Manoharan, A., & Natarajan, S., & Ravindran, B., & Tadepalli, P., Deep RePReL-Combining Planning and Deep RL for acting in relational domains, Deep RL Workshop at NeurIPS 2021.
Dhami, D.S., & Das, M., & Natarajan, S., Beyond Simple Images: Human Knowledge-Guided GANs for Clinical Data Generation, 8th International Conference on Principles of Knowledge Representation and Reasoning (KR) 2021.
Dhami, D.S., & Yan, S., & Kunapuli, G., & Page, D., & Natarajan, S., Predicting Drug-Drug Interactions from Heterogeneous Data: An Embedding Approach, 19th International Conference in Artificial Intelligence in Medicine(AIME) 2021.
Karanam, A., & Hayes, A.L., & Kokel, H., & Haas, D.M., & Radivojac, P., & Natarajan, S., A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes, 19th International Conference in Artificial Intelligence in Medicine(AIME) 2021.
Ramanan, N., & Kunapuli, G., & Khot, T., & Fatemi, B., & Kazemi, S.M., & Poole, D., & Kersting, K., & Natarajan, S., Structure Learning for Relational Logistic Regression: An Ensemble Approach, Data Mining and Knowledge Discovery (DMKD) Journal 2021.
Kakadiya, A., & Natarajan, S., & Ravindran, B., Relational Boosted Bandits, Thirty Fifth AAAI Conference on Artificial Intelligence (AAAI) 2021.
Das, S., & Iyer, R., & Natarajan, S., A Clustering based Selection Framework for Cost Aware and Test-time Feature Elicitation, ACM India Joint International Conference on Data Science & Management of Data (CODS-COMAD) 2021.
Das, M., & Dhami, D.S., & Yu, Y., & Kunapuli, G., & Natarajan, S., Human-Guided Learning of Column Networks: Knowledge Injection for Relational Deep Learning, ACM India Joint International Conference on Data Science & Management of Data (CODS-COMAD) 2021.
Kokel, H., & Manoharan, A., & Natarajan, S., & Ravindran, B., & Tadepalli, P., RePReL: Integrating Relational Planning and Reinforcement Learning for Effective Abstraction, Thirty First International Conference on Automated Planning and Scheduling (ICAPS) 2021.
Kokel, H., & Das, M., & Islam, R., & Bonn, J., & Cai, J., & Dan, S., & Narayan-Chen, A., & Jayannavar, P., & Doppa, J.R., & Hockenmaier, J., & Natarajan, S., & Palmer, M., & Roth, D., Human-guided Collaborative Problem Solving: A Natural Language based Framework, Thirty First International Conference on Automated Planning and Scheduling (ICAPS) 2021.
Kokel, H., & Manoharan, A., & Natarajan, S., & Ravindran, B., & Tadepalli, P., RePReL: Integrating Relational Planning and Reinforcement Learning for Effective Abstraction (Extended Abstract), Planning and Reinforcement Learning (PRL) Workshop at ICAPS 2021.
2020
Yan, S., & Dhami, D.S., & Natarajan, S., The Curious Case of Stacking Boosted Relational Dependency Networks, Proceedings on "I Can't Believe It's Not Better!" at NeurIPS Workshops, PMLR 2020.
Dhami, D.S., & Yan, S., & Kunapuli, G., & Page, D., & Natarajan, S., Beyond Textual Data: Predicting Drug-Drug Interactions from Molecular Structure Images using Siamese Neural Networks, 2020.
Das, S., & Iyer, R., & Natarajan, S., Cost Aware Feature Elicitation, International Workshop on Knowledge-infused Mining and Learning (KIML) organized in conjunction with KDD 2020.
Dhami, D.S., & Das, M., & Natarajan, S., Knowledge Intensive Learning of Generative Adversarial Networks, International Workshop on Knowledge-infused Mining and Learning (KIML) organized in conjunction with KDD (Best student paper award) 2020.
Ramanan, N., & Natarajan, S., Causal Learning from Predictive Modeling for Observational Data, Machine Learning and Artificial Intelligence, Frontiers in Big Data 2020.
Das, M., & Ramanan, N., & Doppa, J.R., & Natarajan, S., Few-Shot Induction of Generalized Logical Concepts via Human Guidance, Computational Intelligence in Robotics, Frontiers in Robotics and AI 2020.
Ramanan, N., & Das, M., & Kersting, K., & Natarajan, S., Discriminative Non-Parametric Learning of Arithmetic Circuits, International Conference on Probabilistic Graphical Models (PGM) 2020.
Das, S., & Natarajan, S., & Roy, K., & Parr, R., & Kersting, K., Fitted Q-Learning for Relational Domains, International Conference on Principles of Knowledge Representation and Reasoning (KR) (accepted as poster paper) 2020.
Chen, Y., & Yang, Y., & Natarajan, S., & Ruozzi, N., Lifted Hybrid Variational Inference, International Joint Conference on Artificial Intelligence (IJCAI) 2020.
Kumaraswamy, R., & Ramanan, N., & Odom, P., & Natarajan, S., Interactive Transfer Learning in Relational Domains, KUIN Springer Journal 2020.
Kokel, H., & Odom, P., & Yang, S., & Natarajan, S., A Unified Framework for Knowledge Intensive Gradient Boosting: Leveraging Human Experts for Noisy Sparse Domain, Thirty Fourth AAAI Conference on Artificial Intelligence (AAAI) 2020.
Kaur, N., & Kunapuli, G., & Natarajan, S., Non-Parametric Learning of Lifted Restricted Boltzmann Machines, International Journal of Approximate Reasoning 2020.
Chen, Y., & Yang, Y., & Natarajan, S., & Ruozzi, N., Lifted Hybrid Variational Inference, Workshop on Statistical Relational AI (StarAI) 2020.
Skinner, M.A., & Raman, L., & Shah, N., & Farhat, A., & Natarajan, S., A preliminary approach for learning relationalpolicies for the management of critically ill children, Workshop on Statistical Relational AI (StarAI) 2020.
Hayes, A.L., srlearn: A Python Library for Gradient-Boosted Statistical Relational Models, Workshop on Statistical Relational AI (StarAI) 2020.
Kaur, N., & Kunapuli, G., & Natarajan, S., Non-Parametric Learning of Lifted Restricted Boltzmann Machines, Workshop on Statistical Relational AI (StarAI) 2020.
Dhami, D.S., & Yan, S., & Kunapuli, G., & Natarajan, S., Non-Parametric Learning of Gaifman Models, Workshop on Statistical Relational AI (StarAI) 2020.
Das, M., & Ramanan, N., & Doppa, J.R., & Natarajan, S., One-Shot Induction of Generalized Logical Concepts via Human Guidance, Workshop on Statistical Relational AI (StarAI) 2020.
2019
Cruise, R., & Blasch, E., & Natarajan, S., & Raz, A., Cyber-Physical Command-Guided Swarm, Defense Systems Information Analysis Center(DCIAC) 2019.
Dhami, D.S., & Kunapuli, G., & Natarajan, S., Efficient Learning of Relational Gaifman Models using Probabilistic Logic, Workshop on Probabilistic Logic Programming (PLP) 2019.
Skinner, M.A., & Raman, L., & Shah, N., & Farhat, A., & Natarajan, S., Elicitation of probabilistic logic rules from records: A preliminary study in learning policies for the of critically ill children, Workshop on Probabilistic Logic Programming (PLP) 2019.
Dhami, D.S., & Kunapuli, G., & Page, D., & Natarajan, S., Predicting Drug-Drug Interactions from Molecular Structure Images, AAAI Fall symposium - AI for Social Good 2019.
Kaur, N., & Kunapuli, G., & Joshi, S., & Kersting, K., & Natarajan, S., Neural Network for Relational Data, 29th International Conference on Inductive Logic Programming (ILP) 2019.
Chen, Y., & Ruozzi, N., & Natarajan, S., Lifted Message Passing for Hybrid Probabilistic Inference, International Joint Conference on Artificial Intelligence (IJCAI) 2019.
Das, M., & Dhami, D.S., & Yu, Y., & Kunapuli, G., & Natarajan, S., Knowledge-augmented Column Networks: Guiding Deep Learning with Advice, Workshop on Human In the Loop Learning (HILL) 2019.
Ramanan, N., & Das, M., & Kersting, K., & Natarajan, S., Discriminative Non-Parametric Learning of Arithmetic Circuits, The Third Workshop On Tractable Probabilistic Modeling (TPM) 2019.
Ramanan, N., & Natarajan, S., Work-In-Progress: Ensemble Causal Learning for Modeling Post-Partum Depression, AAAI Spring Symposium on Beyond Curve Fitting — Causation, Counterfactuals and Imagination-Based AI 2019.
Das, M., & Odom, P., & Islam, M.R., & Doppa, J., & Roth, D., & Natarajan, S., Planning with actively eliciting preferences, Knowledge-Based Systems 2019.
Das, M., & Dhami, D.S., & Kunapuli, G., & Kersting, K., & Natarajan, S., Fast Relational Probabilistic Inference and Learning Approximate Counting via Hypergraphs, 33rd AAAI Conference on Artificial Intelligence (AAAI) 2019.
2018
Blasch, E., & Cruise, R., & Natarajan, S., & Raz, A., Control Diffusion of Information Collection for Situation Understanding Using Boosting MLNs, International Conference on Information Fusion (FUSION) 2018.
Das, M., & Dhami, D.S., & Kunapuli, G., & Kersting, K., & Natarajan, S., Approximate Counting for Fast Inference and Learning in Probabilistic Programming, Proceedings of the Inaugural International Conference on Probabilistic Programming (ProbProg) 2018.
Natarajan, S., & Odom, P., & Khot, T., & Kersting, K., & Shavlik, J., Human-in-the-loop Learning for Probabilistic Programming, Proceedings of the Inaugural International Conference on Probabilistic Programming (ProbProg) 2018.
Ramanan, N., & Kunapuli, G., & Khot, T., & Fatemi, B., & Kazemi, S.M., & Poole, D., & Kersting, K., & Natarajan, S., Structure Learning for Relational Logistic Regression: An Ensemble Approach, 16th International Conference on Principles of Knowledge Representation and Reasoning (KR) 2018.
Ramanan, N., & Kunapuli, G., & Khot, T., & Fatemi, B., & Kazemi, S.M., & Poole, D., & Kersting, K., & Natarajan, S., Structure Learning for Relational Logistic Regression: An Ensemble Approach, Hybrid reasoning and Learning (KR) 2018.
Dhami, D.S., & Kunapuli, G., & Das, M., & Page, D., & Natarajan, S., Drug-Drug Interaction Discovery: Kernel Learning from Heterogeneous Similarities, IEEE Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2018.
Natarajan, S., & Das, S., & Ramaman, N., & Kunapuli, G., & Radivojac, P., Whom Should I Perform the Lab Test on Next? An Active Feature Elicitation Approach, International Joint Conference on Artificial Intelligence (IJCAI) 2018.
Odom, P., & Natarajan, S., Human-Guided Learning for Probabilistic Logic Models, Frontiers in Robotics and AI (Front. Robot. AI) 2018.
Das, M., & Odom, P., & Islam, M.R., & Doppa, J., & Roth, D., & Natarajan, S., Preference- Guided Planning: An Active Elicitation Approach, International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2018.
Molina, A., & Vergari, A., & Mauro, N.D., & Esposito, F., & Natarajan, S., & Kersting, K., Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains, In Proceedings of the Conference on Artificial Intelligence (AAAI) 2018.
2017
Yang, S., & Hadiji, F., & Kersting, K., & Grannis, S., & Natarajan, S., Modeling Heart Procedures from EHRs: An Application of Exponential Families, IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM) 2017.
Ramanan, N., & Yang, S., & Grannis, S., & Natarajan, S., Discriminative Boosted Bayes Networks for Learning Multiple Cardiovascular Procedures, IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM) 2017.
Hayes, A.L., & Das, M., & Odom, P., & Natarajan, S., User Friendly Automatic Construction of Background Knowledge: Mode Construction from ER Diagrams, Knowledge Capture Conference 2017.
Natarajan, S., & Prabhakar, A., & Ramanan, N., & Bagilone, A., & Siek, K., & Connelly, K., Boosting for Post Partum Depression Prediction, IEEE Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2017.
Kaur, N., & Kunapuli, G., & Khot, T., & Kersting, K., & Cohen, W., & Natarajan, S., Relational Restricted Boltzmann Machines: A Probabilistic Logic Learning Approach, International Conference on Inductive Logic Programming (ILP) 2017.
Yang, S., & Korayem, M., & Aljadda, K., & Grainger, T., & Natarajan, S., Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach, Knowledge-Based Systems 2017.
Dhami, D.S., & Soni, A., & Page, D., & Natarajan, S., Identifying Parkinson's Patients : A Functional Gradient Boosting Approach, Artificial Intelligence in Medicine (AIME) 2017.
Molina, A., & Natarajan, S., & Kersting, K., Poisson Sum-Product Networks: A Deep Architecture for Tractable Multivariate Poisson Distributions, Thirty First AAAI Conference on Artificial Intelligence (AAAI) 2017.
Dhami, D.S., & Leake, D., & Natarajan, S., Knowledge-based Morphological Classification of Galaxies from Vision Features, Knowledge-Based Techniques for Problem Solving and Reasoning (AAAI) 2017.
Das, M., & Islam, M.R., & Doppa, J.R., & Roth, D., & Natarajan, S., Active Preference Elicitation for Planning, Human-Machine Collaborative Learning (AAAI) 2017.
Narayan-Chen, A., & Graber, C., & Das, M., & Islam, R., & Dan, S., & Natarajan, S., & Doppa, J.R., & Hockenmaier, J., & Palmer, M., & Roth, D., Towards Problem Solving Agents that Communicate and Learn, RoboNLP at Association for Computational Linguistic (ACL) 2017.
2016
Raedt, L.D., & Kersting, K., & Natarajan, S., & Poole, D., Statistical Relational Artificial Intelligence Logic, Probability, and Computation, 2016.
Malec, M., & Khot, T., & Nagy, J., & Blasch, E., & Natarajan, S., Inductive Logic Programming meets Relational Databases: An Application to Statistical Relational Learning, International Conference on Inductive Logic Programming (ILP) 2016.
Soni, A., & Viswanathan, D., & Shavlik, J., & Natarajan, S., Learning Relational Dependency Networks for Relation Extraction, International Conference on Inductive Logic Programming (ILP) 2016.
Odom, P., & Kumaraswamy, R., & Kersting, K., & Natarajan, S., Learning through Advice-Seeking via Transfer, International Conference on Inductive Logic Programming (ILP) 2016.
Odom, P., & Natarajan, S., Actively Interacting with Experts: A Probabilistic Logic Approach, European Conference on Machine Learning and Principles of Knowledge Discovery in Databases (ECMLPKDD) 2016.
MacLeod, H., & Yang, S., & Oakes, K., & Connelly, K., & Natarajan, S., Identifying Rare Diseases from Behavioural Data: A Machine Learning Approach, IEEE Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2016.
Odom, P., & Natarajan, S., Active Advice Seeking for Inverse Reinforcement Learning, International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2016.
Das, M., & Wu, Y., & Khot, T., & Kersting, K., & Natarajan, S., Scaling Lifted Probabilistic Inference and Learning Via Graph Databases, SIAM International Conference on Data Mining (SDM) 2016.
Yang, S., & Khot, T., & Kersting, K., & Natarajan, S., Learning Continuous-Time Bayesian Networks in Relational Domains: A Non-Parametric Approach, Thirtieth AAAI Conference on Artificial Intelligence (AAAI) 2016.
2015
Natarajan, S., & Khot, T., & Kersting, K., & Shavlik, J., Boosted Statistical Relational Learners: From Benchmarks to Data-Driven Medicine, 2015.
Kumaraswamy, R., & Odom, P., & Kersting, K., & Leake, D., & Natarajan, S., Transfer Learning via Relational Type Matching, International Conference on Data Mining (ICDM) 2015.
Das, M., & Wu, Y., & Khot, T., & Kersting, K., & Natarajan, S., Graph-based Approximate Counting for Relational Probabilistic Models, International Workshop on Statistical Relational AI (StarAI) 2015.
Kumaraswamy, R., & Odom, P., & Kersting, K., & Leake, D., & Natarajan, S., Transfer Learning Across Relational and Uncertain Domains: A Language-Bias Approach, International Workshop on Statistical Relational AI (StarAI) 2015.
Yang, S., & Kersting, K., & Terry, G., & Carr, J., & Natarajan, S., Modeling Coronary Artery Calcification Levels From Behavioral Data in a Clinical Study, Artificial Intelligence in Medicine (AIME) 2015.
Odom, P., & Bangera, V., & Khot, T., & Page, D., & Natarajan, S., Extracting Adverse Drug Events from Text using Human Advice, Artificial Intelligence in Medicine (AIME) 2015.
Odom, P., & Khot, T., & Porter, R., & Natarajan, S., Knowledge-Based Probabilistic Logic Learning, Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI) 2015.
Weiss, J., & Natarajan, S., & Page, D., Learning To Reject Sequential Importance Steps for Continuous-Time Bayesian Networks, Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI) 2015.
Odom, P., & Khot, T., & Natarajan, S., Learning Probabilistic Logic Models with Human Advice, AAAI Spring Symposium on Knowledge Representation and Reasoning 2015.
Odom, P., & Natarajan, S., Active Advice Seeking for Inverse Reinforcement Learning, AAAI Student Abstract and Poster Program (AAAI) 2015.
Khot, T., & Natarajan, S., & Kersting, K., & Shavlik, J., Gradient-based boosting for statistical relational learning: the Markov logic network and missing data cases, Machine Learning Journal (MLJ) 2015.
2014
Poyrekar, S., & Natarajan, S., & Kersting, K., A Deeper Empirical Analysis of CBP algorithm: Grounding is the Bottleneck, International Workshop on Statistical Relational AI (StarAI) 2014.
Yang, S., & Khot, T., & Kersting, K., & Kunapuli, G., & Hauser, K., & Natarajan, S., Learning from Imbalanced Data in Relational Domains: A Soft Margin Approach, International Conference on Data Mining (ICDM) 2014.
Khot, T., & Natarajan, S., & Shavlik, J., Relational One-Class Classification: A non-parametric approach, Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI) 2014.
Natarajan, S., & Leiva, J.M.P., & Khot, T., & Kersting, K., & Re, C., & Shavlik, J., Effectively creating weakly labeled training examples via approximate domain knowledge, International Conference in Inductive Logic Programming (ILP) 2014.
Poole, D., & Buchman, D., & Kazemi, S.M., & Kersting, K., & Natarajan, S., Population Size Extrapolation in Relational Probabilistic Modelling, Scalable Uncertainty Management (SUM) 2014.
Fern, A., & Natarajan, S., & Judah, K., & Tadepalli, P., A Decision-Theoretic Model of Assistance, Journal Of Artificial Intelligence Research (JAIR) 2014.
Kazemi, S.M., & Buchman, D., & Kersting, K., & Natarajan, S., & Poole, D., Relational Logistic Regression, International Conference on Principles of Knowledge Representation and Reasoning (KR) 2014.
Magnano, C., & Soni, A., & Natarajan, S., & Kunapuli, G., A graphical model approach to ATLAS-free mining of MRI images, SIAM International Conference on Data Mining (SDM) 2014.
2013
Ahmadi, B., & Kersting, K., & Mladenov, M., & Natarajan, S., Exploring Symmetries for Scaling Loopy Belief Propagation and Relational Training, Machine Learning Journal (MLJ) 2013.
Natarajan, S., & Saha, B.N., & Joshi, S., & Edwards, A., & Moody, E., & Khot, T., & Kersting, K., & Whitlow, C.T., & Maldjian, J.A., Relational Learning helps in Three-way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain (draft), International Journal of Machine Learning and Cybernetics, Springer 2013.
Kunapuli, G., & Odom, P., & Shavlik, J., & Natarajan, S., Guiding Autonomous Agents to Better Behaviors through Human Advice, IEEE International Conference on Data Mining (ICDM) 2013.
Natarajan, S., & Kersting, K., & Ip, E., & Jacobs, D., & Carr, J., Early Prediction of Coronary Artery Calcification Levels Using Machine Learning, AAAI conference on Innovative Applications in AI (IAAI) 2013.
Yang, S., & Natarajan, S., Knowledge Intensive Learning: Combining Qualitative Constraints with Causal Independence for Parameter Learning in Probabilistic Models, European Conference on Machine Learning, (ECMLPKDD) 2013.
Saha, B., & Kunapuli, G., & Ray, N., & Maldjian, J., & Natarajan, S., AR-Boost: Reducing Overfitting by a Robust Data-Driven Regularization Strategy, European Conference on Machine Learning, (ECMLPKDD) 2013.
Natarajan, S., & Odom, P., & Joshi, S., & Khot, T., & Kersting, K., & Tadepalli, P., Accelarating Imitation Learning in Relational Domains via Transfer by Initialization, International Conference on Inductive Logic Programming (ILP) 2013.
Khot, T., & Natarajan, S., & Kersting, K., & Shavlik, J., Learning Relational Probabilistic Models from Partially Observed Data - Opening the Closed-World Assumption, International Conference on Inductive Logic Programming (ILP) 2013.
Weiss, J., & Natarajan, S., & Page, D., Learning When to Reject an Importance Sample, Late-Breaking Paper (AAAI) 2013.
2012
Weiss, J., & Natarajan, S., & Peissig, P., & McCarty, C., & Page, D., Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records, AI Magazine 2012.
Weiss, J., & Natarajan, S., & Page, D., Multiplicative Forests for Continuous-Time Processes, Neural Information Processing Systems (NIPS) 2012.
Ahmadi, B., & Kersting, K., & Natarajan, S., Lifted Online Training of Relational Models with Stochastic Gradient Methods, European Conference on Machine Learning, (ECMLPKDD) 2012.
Natarajan, S., & Kersting, K., & Joshi, S., & Saldana, S., & Ip, E., & Jacobs, D., & Carr, J., Early Prediction of Coronary Artery Calcification Levels Using Statistical Relational Learning, ICML Workshop on Machine Learning for Clinical Data Analysis 2012.
Weiss, J., & Natarajan, S., & Peissig, P., & McCarty, C., & Page, D., Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records, AAAI conference on Innovative Applications in AI (IAAI) 2012.
Page, D., & Natarajan, S., & Costa, V.S., & Peissig, P., & Barnard, A., & Caldwell, M., Identifying Adverse Drug Events from Multi-Relational Healthcare Data, Twenty-Sixth Conference on Artificial Intelligence (AAAI) 2012.
Saha, B.N., & Natarajan, S., & Kota, G., & Whitlow, C.T., & Bowden, D.W., & Divers, J., & Freedman, B.I., & Maldjian, J.A., A Novel Hierarchical Level Set with AR-Boost for White Matter Lesion Segmentation in Diabetes, International Conference on Machine Learning and Applications (ICMLA) 2012.
Natarajan, S., & Joshi, S., & Saha, B.N., & Edwards, A., & Moody, E., & Khot, T., & Kersting, K., & Whitlow, C.T., & Maldjian, J.A., A Machine Learning Pipeline for Three-way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain, International Conference on Machine Learning and Applications (ICMLA) 2012.
Saha, B.N., & Whitlow, C.T., & Kota, G., & Moody, E., & Natarajan, S., & Bowden, D.W., & Divers, J., & Freedman, B.I., & Maldjian, J.A., Hierarchical Level Sets with Boosting for White Matter Lesion Segmentation in Diabetes, Radiological Society of North America Annual Meeting 2012.
Maldjian, J.A., & Whitlow, C.T., & Saha, B.N., & Kota, G., & Moody, E., & Bowden, D.W., & Divers, J., & Freedman, B.I., Evaluation of Automated White Matter Lesion Segmentation in Diabetes, Radiological Society of North America Annual Meeting 2012.
Ahmadi, B., & Kersting, K., & Natarajan, S., Lifted Parameter Learning in Relational Models, ICML Workshop on Statistical Relational Learning (SRL) 2012.
Khot, T., & Natarajan, S., & Kersting, K., & Shavlik, J., Structure Learning with Hidden Data in Relational Domains, ICML Workshop on Statistical Relational Learning (SRL) 2012.
Natarajan, S., & Odom, P., & Joshi, S., & Khot, T., & Kersting, K., & Tadepalli, P., Accelarating Imitation Learning in Relational Domains via Transfer by Initialization, International Workshop on Statistical Relational AI 2012.
Freedman, R.G., & Braz, R.d.S., & Bui, H., & Natarajan, S., Initial Empirical Evaluation of Anytime Lifted Belief Propagation, International Workshop on Statistical Relational AI 2012.
Khot, T., & Srivastava, S., & Natarajan, S., & Shavlik, J., Learning Relational Structure for Temporal Relation Extraction, International Workshop on Statistical Relational AI 2012.
N, P.K.V., & Manimaran, S.S., & Ravindran, B., & Natarajan, S., Integrating Human Instructions and Reinforcement Learners: An SRL Approach, International Workshop on Statistical Relational AI 2012.
Poole, D., & Buchman, D., & Natarajan, S., & Kersting, K., Aggregation and Population Growth: The Relational Logistic Regression and Markov Logic Cases, International Workshop on Statistical Relational AI 2012.
Natarajan, S., & Khot, T., & Kersting, K., & Gutmann, B., & Shavlik, J., Gradient-based Boosting for Statistical Relational Learning: The Relational Dependency Network Case, Invited contribution to special issue of Machine Learning Journal (MLJ) 2012.
2011
Natarajan, S., & Tadepalli, P., & Fern, A., A Relational Hierarchical Model of Decision-Theoretic Assistance, Knowledge and Information Systems (KAIS) 2011.
Natarajan, S., & Joshi, S., & Tadepalli, P., & Kersting, K., & Shavlik, J., Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach, International Joint Conference in AI (IJCAI) 2011.
Khot, T., & Natarajan, S., & Kersting, K., & Shavlik, J., Learning Markov Logic Networks via Functional Gradient Boosting, International Conference in Data Mining (ICDM) 2011.
Subramaniam, S., & Natarajan, S., & Senes, A., A Machine Learning based Approach to Improve Protein Sidechain Optimization, ACM Conference on Bioinformatics, Computational Biology and Biomedicine (ACM BCB) 2011.
Natarajan, S., & Joshi, S., & Tadepalli, P., & Kersting, K., & Shavlik, J., Imitation Learning in Relational Domains Using Functional Gradient Boosting, The Learning Workshop 2011.
2010
Natarajan, S., & Page, D., Machine Learning for High-Throughput Biomedical Data: Lessons Learned, Machine Learning Encyclopedia 2010.
Natarajan, S., & Khot, T., & Lowd, D., & Kersting, K., & Tadepalli, P., & Shavlik, J., Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models, European Conference on Machine Learning (ECML) 2010.
Natarajan, S., & Khot, T., & Kersting, K., & Gutmann, B., & Shavlik, J., Boosting Relational Dependency Networks, International Conference on Inductive Logic Programming (ILP) 2010.
Natarajan, S., & Kunapuli, G., & Judah, K., & Tadepalli, P., & Kersting, K., & Shavlik, J., Multi Agent Inverse Reinforcement Learning, IEEE Conference on Machine Learning and Applications (ICMLA) 2010.
Walker, T., & Kunapuli, G., & Natarajan, S., & Shavlik, J., & Page, D., Automating the ILP Setup Task: Converting User Advice about Specific Examples into General Background Knowledge, International Conference on Inductive Logic Programming (ILP) 2010.
Natarajan, S., & Kunapuli, G., & Judah, K., & Tadepalli, P., & Kersting, K., & Shavlik, J., Multi-Agent Inverse Reinforcement Learning, The Learning Worshop 2010.
Natarajan, S., & Kunapuli, G., & Maclin, R., & Page, D., & O'Reilly, C., & Walker, T., & Shavlik, J., Learning from Human Teachers: Issues and Challenges for ILP in Bootstrap Learning, AAMAS Workshop on Agents Learning Interactively from Human Teachers 2010.
2009
Shavlik, J., & Natarajan, S., Speeding up Inference in Markov Logic Networks By Preprocessing to Reduce the Size of the Resulting Grounded Network, International Joint Conference in Artificial Intelligence (IJCAI) 2009.
Natarajan, S., & Tadepalli, P., & Kunapuli, G., & Shavlik, J., Learning Parameters for Relational Probabilistic Models with Noisy-Or Combining Rule, IEEE Conference on Machine Learning and Applications (ICML-A) 2009.
Kersting, K., & Ahmadi, B., & Natarajan, S., Counting Lifted Belief Propagation, International Conference on Uncertainty in AI (UAI) 2009.
Natarajan, S., & Kunapuli, G., & Reilly, C.O., & Maclin, R., & Walker, T., & Page, D., & Shavlik, J., ILP for Bootstrapped Learning: A Layered Approach to Automating the ILP Setup Problem, International Conference on Inductive Logic Programming 2009.
Natarajan, S., & Tadepalli, P., & Kunapuli, G., & Shavlik, J., Knowledge Intensive Learning: Directed vs. Undirected SRL Models, International Workshop in SRL 2009.
Braz, R.d.S., & Natarajan, S., & Bui, H., & Shavlik, J., & Russell, S., Anytime Lifted Belief Propagation, International Workshop in SRL 2009.
2008
Natarajan, S., & Tadepalli, P., & Dietterich, T.G., & Fern, A., Learning First-Order Probabilistic Models with Combining Rules, Annals of Mathematics and AI, Special Issue on Probabilistic Relational Learning 2008.
Mehta, N., & Natarajan, S., & Tadepalli, P., & Fern, A., Transfer in Variable Reward Hierarchical Reinforcement Learning, Invited contribution to Inductive transfer in Machine Learning 2008.
Natarajan, S., & H.Bui, H., & Tadepalli, P., & Kersting, K., & Wong, W., Logical Hierarchical Hidden Markov Models for User Activity Recognition, International Conference on Inductive Logic Programming 2008.
2007
Natarajan, S., & Tadepalli, P., & Fern, A., A Relational Hierarchical Model of Decision-Theoretic Assistance, Proceedings of the International Conference on Inductive Logic Programming 2007.
Fern, A., & Natarajan, S., & Judah, K., & Tadepalli, P., A Decision theoretic model of Assistance, International Joint Conference in Artificial Intelligence (IJCAI) 2007.
Natarajan, S., & Judah, K., & Tadepalli, P., & Fern, A., A Decision-Theoretic Model of Assistance - Evaluation, Extensions and Open Problems, AAAI Spring Symposium on Interaction Challenges for Intelligent Assistants 2007.
Natarajan, S., & Tadepalli, P., & Fern, A., Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies - Extended Abstract, Proceedings of the Dagstuhl Seminar on Probabilistic, Logical and Relational Learning 2007.
2006
Fern, A., & Natarajan, S., & Judah, K., & Tadepalli, P., A Decision theoretic model of Assistance, Modeling Others from Observations workshop in AAAI 2006.
Natarajan, S., & Wong, W., & Tadepalli, P., Structure Refinement in First Order Conditional Influence Language, Open Problems in Statistical Relational Learning, ICML 2006.
2005
Natarajan, S., & Tadepalli, P., & Altendorf, E., & Dietterich, T.G., & Fern, A., & Restificar, A., Learning First-Order Probabilistic Models with Combining Rules, 22nd International Conference on Machine Learning (ICML) 2005.
Natarajan, S., & Tadepalli, P., Dynamic Preferences in Multi-Criteria Reinforcement Learning, 22nd International Conference on Machine Learning (ICML) 2005.